Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 921-941
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group and write ${\rm cd} (G)$ for the degree set of the complex irreducible characters of $G$. The group $G$ is said to satisfy the two-prime hypothesis if for any distinct degrees $a, b \in {\rm cd} (G)$, the total number of (not necessarily different) primes of the greatest common divisor $\gcd (a, b)$ is at most $2$. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL$_2 (q)$ for $q \geq 7$.
Let $G$ be a finite group and write ${\rm cd} (G)$ for the degree set of the complex irreducible characters of $G$. The group $G$ is said to satisfy the two-prime hypothesis if for any distinct degrees $a, b \in {\rm cd} (G)$, the total number of (not necessarily different) primes of the greatest common divisor $\gcd (a, b)$ is at most $2$. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL$_2 (q)$ for $q \geq 7$.
DOI : 10.21136/CMJ.2018.0027-17
Classification : 20C15, 20D05
Keywords: character degrees; prime divisors
@article{10_21136_CMJ_2018_0027_17,
     author = {Lewis, Mark L. and Liu, Yanjun and Tong-Viet, Hung P.},
     title = {Groups satisfying the two-prime hypothesis with a composition factor isomorphic to {PSL}$_2(q)$ for $q\geq 7$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {921--941},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0027-17},
     mrnumber = {3881887},
     zbl = {07031688},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/}
}
TY  - JOUR
AU  - Lewis, Mark L.
AU  - Liu, Yanjun
AU  - Tong-Viet, Hung P.
TI  - Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 921
EP  - 941
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/
DO  - 10.21136/CMJ.2018.0027-17
LA  - en
ID  - 10_21136_CMJ_2018_0027_17
ER  - 
%0 Journal Article
%A Lewis, Mark L.
%A Liu, Yanjun
%A Tong-Viet, Hung P.
%T Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$
%J Czechoslovak Mathematical Journal
%D 2018
%P 921-941
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/
%R 10.21136/CMJ.2018.0027-17
%G en
%F 10_21136_CMJ_2018_0027_17
Lewis, Mark L.; Liu, Yanjun; Tong-Viet, Hung P. Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 921-941. doi: 10.21136/CMJ.2018.0027-17

[1] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford University Press, Eynsham (1985). | MR | JFM

[2] The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.8.4. Available at http://www.gap-system.org (2016).

[3] Giudici, M.: Maximal subgroups of almost simple groups with socle $ PSL(2,q)$. Available at arXiv:math/0703685.

[4] Hamblin, J.: Solvable groups satisfying the two-prime hypothesis I. Algebr. Represent. Theory 10 (2007), 1-24. | DOI | MR | JFM

[5] Hamblin, J., Lewis, M. L.: Solvable groups satisfying the two-prime hypothesis II. Algebr. Represent. Theory 15 (2012), 1099-1130. | DOI | MR | JFM

[6] Huppert, B.: Endliche Gruppen. Springer, Berlin (1967), German. | DOI | MR | JFM

[7] Huppert, B., Blackburn, N.: Finite Groups II. Springer, Berlin (1982). | DOI | MR | JFM

[8] Isaacs, I. M.: Characters of solvable and symplectic groups. Am. J. Math. 95 (1973), 594-635. | DOI | MR | JFM

[9] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69. Academic Press, New York (1976). | MR | JFM

[10] Lewis, M. L., Liu, Y.: Simple groups and the two-prime hypothesis. Monatsh. Math. 181 (2016), 855-867. | DOI | MR | JFM

[11] Lewis, M. L., Liu, Y., Tong-Viet, H. P.: The two-prime hypothesis: groups whose nonabelian composition factors are not isomorphic to PSL$_2(q)$. Monatsh. Math. 184 (2017), 115-131. | DOI | MR | JFM

[12] White, D. L.: Character degrees of extensions of PSL$_2(q)$ and SL$_2(q)$. J. Group Theory 16 (2013), 1-33. | DOI | MR | JFM

Cité par Sources :