Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 921-941.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a finite group and write ${\rm cd} (G)$ for the degree set of the complex irreducible characters of $G$. The group $G$ is said to satisfy the two-prime hypothesis if for any distinct degrees $a, b \in {\rm cd} (G)$, the total number of (not necessarily different) primes of the greatest common divisor $\gcd (a, b)$ is at most $2$. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL$_2 (q)$ for $q \geq 7$.
DOI : 10.21136/CMJ.2018.0027-17
Classification : 20C15, 20D05
Keywords: character degrees; prime divisors
@article{10_21136_CMJ_2018_0027_17,
     author = {Lewis, Mark L. and Liu, Yanjun and Tong-Viet, Hung P.},
     title = {Groups satisfying the two-prime hypothesis with a composition factor isomorphic to {PSL}$_2(q)$ for $q\geq 7$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {921--941},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2018},
     doi = {10.21136/CMJ.2018.0027-17},
     mrnumber = {3881887},
     zbl = {07031688},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/}
}
TY  - JOUR
AU  - Lewis, Mark L.
AU  - Liu, Yanjun
AU  - Tong-Viet, Hung P.
TI  - Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 921
EP  - 941
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/
DO  - 10.21136/CMJ.2018.0027-17
LA  - en
ID  - 10_21136_CMJ_2018_0027_17
ER  - 
%0 Journal Article
%A Lewis, Mark L.
%A Liu, Yanjun
%A Tong-Viet, Hung P.
%T Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$
%J Czechoslovak Mathematical Journal
%D 2018
%P 921-941
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/
%R 10.21136/CMJ.2018.0027-17
%G en
%F 10_21136_CMJ_2018_0027_17
Lewis, Mark L.; Liu, Yanjun; Tong-Viet, Hung P. Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 921-941. doi : 10.21136/CMJ.2018.0027-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/

Cité par Sources :