Keywords: character degrees; prime divisors
@article{10_21136_CMJ_2018_0027_17,
author = {Lewis, Mark L. and Liu, Yanjun and Tong-Viet, Hung P.},
title = {Groups satisfying the two-prime hypothesis with a composition factor isomorphic to {PSL}$_2(q)$ for $q\geq 7$},
journal = {Czechoslovak Mathematical Journal},
pages = {921--941},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2018.0027-17},
mrnumber = {3881887},
zbl = {07031688},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/}
}
TY - JOUR AU - Lewis, Mark L. AU - Liu, Yanjun AU - Tong-Viet, Hung P. TI - Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$ JO - Czechoslovak Mathematical Journal PY - 2018 SP - 921 EP - 941 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/ DO - 10.21136/CMJ.2018.0027-17 LA - en ID - 10_21136_CMJ_2018_0027_17 ER -
%0 Journal Article %A Lewis, Mark L. %A Liu, Yanjun %A Tong-Viet, Hung P. %T Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$ %J Czechoslovak Mathematical Journal %D 2018 %P 921-941 %V 68 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/ %R 10.21136/CMJ.2018.0027-17 %G en %F 10_21136_CMJ_2018_0027_17
Lewis, Mark L.; Liu, Yanjun; Tong-Viet, Hung P. Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 921-941. doi: 10.21136/CMJ.2018.0027-17
[1] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford University Press, Eynsham (1985). | MR | JFM
[2] The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.8.4. Available at http://www.gap-system.org (2016).
[3] Giudici, M.: Maximal subgroups of almost simple groups with socle $ PSL(2,q)$. Available at arXiv:math/0703685.
[4] Hamblin, J.: Solvable groups satisfying the two-prime hypothesis I. Algebr. Represent. Theory 10 (2007), 1-24. | DOI | MR | JFM
[5] Hamblin, J., Lewis, M. L.: Solvable groups satisfying the two-prime hypothesis II. Algebr. Represent. Theory 15 (2012), 1099-1130. | DOI | MR | JFM
[6] Huppert, B.: Endliche Gruppen. Springer, Berlin (1967), German. | DOI | MR | JFM
[7] Huppert, B., Blackburn, N.: Finite Groups II. Springer, Berlin (1982). | DOI | MR | JFM
[8] Isaacs, I. M.: Characters of solvable and symplectic groups. Am. J. Math. 95 (1973), 594-635. | DOI | MR | JFM
[9] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69. Academic Press, New York (1976). | MR | JFM
[10] Lewis, M. L., Liu, Y.: Simple groups and the two-prime hypothesis. Monatsh. Math. 181 (2016), 855-867. | DOI | MR | JFM
[11] Lewis, M. L., Liu, Y., Tong-Viet, H. P.: The two-prime hypothesis: groups whose nonabelian composition factors are not isomorphic to PSL$_2(q)$. Monatsh. Math. 184 (2017), 115-131. | DOI | MR | JFM
[12] White, D. L.: Character degrees of extensions of PSL$_2(q)$ and SL$_2(q)$. J. Group Theory 16 (2013), 1-33. | DOI | MR | JFM
Cité par Sources :