Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 921-941
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a finite group and write ${\rm cd} (G)$ for the degree set of the complex irreducible characters of $G$. The group $G$ is said to satisfy the two-prime hypothesis if for any distinct degrees $a, b \in {\rm cd} (G)$, the total number of (not necessarily different) primes of the greatest common divisor $\gcd (a, b)$ is at most $2$. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL$_2 (q)$ for $q \geq 7$.
DOI :
10.21136/CMJ.2018.0027-17
Classification :
20C15, 20D05
Keywords: character degrees; prime divisors
Keywords: character degrees; prime divisors
@article{10_21136_CMJ_2018_0027_17,
author = {Lewis, Mark L. and Liu, Yanjun and Tong-Viet, Hung P.},
title = {Groups satisfying the two-prime hypothesis with a composition factor isomorphic to {PSL}$_2(q)$ for $q\geq 7$},
journal = {Czechoslovak Mathematical Journal},
pages = {921--941},
publisher = {mathdoc},
volume = {68},
number = {4},
year = {2018},
doi = {10.21136/CMJ.2018.0027-17},
mrnumber = {3881887},
zbl = {07031688},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/}
}
TY - JOUR AU - Lewis, Mark L. AU - Liu, Yanjun AU - Tong-Viet, Hung P. TI - Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$ JO - Czechoslovak Mathematical Journal PY - 2018 SP - 921 EP - 941 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/ DO - 10.21136/CMJ.2018.0027-17 LA - en ID - 10_21136_CMJ_2018_0027_17 ER -
%0 Journal Article %A Lewis, Mark L. %A Liu, Yanjun %A Tong-Viet, Hung P. %T Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$ %J Czechoslovak Mathematical Journal %D 2018 %P 921-941 %V 68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0027-17/ %R 10.21136/CMJ.2018.0027-17 %G en %F 10_21136_CMJ_2018_0027_17
Lewis, Mark L.; Liu, Yanjun; Tong-Viet, Hung P. Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 921-941. doi: 10.21136/CMJ.2018.0027-17
Cité par Sources :