On the pointwise limits of sequences of Świątkowski functions
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 875-888 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The characterization of the pointwise limits of the sequences of Świątkowski functions is given. Modifications of Świątkowski property with respect to different topologies finer than the Euclidean topology are discussed.
The characterization of the pointwise limits of the sequences of Świątkowski functions is given. Modifications of Świątkowski property with respect to different topologies finer than the Euclidean topology are discussed.
DOI : 10.21136/CMJ.2018.0022-17
Classification : 26A15, 26A21, 54C08, 54C30
Keywords: Świątkowski function; cliquish function; pointwise limit; $^\ast $topology of Hashimoto; $\mathcal {I}$-density topology; density topology
@article{10_21136_CMJ_2018_0022_17,
     author = {Natkaniec, Tomasz and W\'odka, Julia},
     title = {On the pointwise limits of sequences of {\'Swi\k{a}tkowski} functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {875--888},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0022-17},
     mrnumber = {3881885},
     zbl = {07031686},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0022-17/}
}
TY  - JOUR
AU  - Natkaniec, Tomasz
AU  - Wódka, Julia
TI  - On the pointwise limits of sequences of Świątkowski functions
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 875
EP  - 888
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0022-17/
DO  - 10.21136/CMJ.2018.0022-17
LA  - en
ID  - 10_21136_CMJ_2018_0022_17
ER  - 
%0 Journal Article
%A Natkaniec, Tomasz
%A Wódka, Julia
%T On the pointwise limits of sequences of Świątkowski functions
%J Czechoslovak Mathematical Journal
%D 2018
%P 875-888
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0022-17/
%R 10.21136/CMJ.2018.0022-17
%G en
%F 10_21136_CMJ_2018_0022_17
Natkaniec, Tomasz; Wódka, Julia. On the pointwise limits of sequences of Świątkowski functions. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 875-888. doi: 10.21136/CMJ.2018.0022-17

[1] Filipczak, M., Ivanova, G., Wódka, J: Comparison of some families of real functions in porosity terms. Math. Slovaca 67 (2017), 1155-1164. | DOI | MR | JFM

[2] Grande, Z.: Sur la quasi-continuité et la quasi-continuité approximative. Fundam. Math. 129 (1988), 167-172 French. | DOI | MR | JFM

[3] Grande, Z.: On a subclass of the family of Darboux functions. Colloq. Math. 117 (2009), 95-104. | DOI | MR | JFM

[4] Hashimoto, H.: On the *topology and its application. Fundam. Math. 91 (1976), 5-10. | DOI | MR | JFM

[5] Ivanova, G., Wagner-Bojakowska, E. Z.: On some subclasses of the family of Darboux Baire 1 functions. Opusc. Math. 34 (2014), 777-788. | DOI | MR | JFM

[6] Ivanova, G., Wagner-Bojakowska, E. Z.: On some modification of Darboux property. Math. Slovaca 66 (2016), 79-88. | DOI | MR | JFM

[7] Kowalewski, M., Szczuka, P.: Separating sets by Świątkowski functions. Quaest. Math. 39 (2016), 471-477. | DOI | MR

[8] Kuratowski, C.: Topologie. Vol. I. Panstwowe Wydawnictwo Naukowe, Warszawa (1958), French. | MR | JFM

[9] Lester, R.: Pointwise Discontinuous Function. Dissertation, University of Missouri, Missouri (1912).

[10] Maliszewski, A.: On the limits of strong Świątkowski function. Zesz. Nauk. Politech. Łódź. 719, Mat. 27 (1995), 87-93. | MR | JFM

[11] Maliszewski, A.: Darboux Property and Quasi-Continuity. A Uniform Approach. Dissertation, WSP, Słupsk (1996).

[12] Maliszewski, A., Wódka, J.: Products of Świątkowski and quasi-continuous functions. J. Appl. Anal. 20 (2014), 129-132. | DOI | MR | JFM

[13] Maliszewski, A., Wódka, J.: Products of Świątkowski functions. Math. Slovaca 66 (2016), 601-604. | DOI | MR | JFM

[14] Mańk, T., Świątkowski, T.: On some class of functions with Darboux's characteristic. Zesz. Nauk. Politech. Lodz., Mat. 11 (1978), 5-10. | MR | JFM

[15] Marciniak, M., Szczuka, P.: $A$-Darboux functions. Lith. Math. J. 56 (2016), 107-113. | DOI | MR | JFM

[16] Oxtoby, J. C.: Measure and Category. A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics 2, Springer, New York (1980). | DOI | MR | JFM

[17] Pawlak, H., Pawlak, R.: On some conditions equivalent to the condition of Świątkowski for Darboux functions of one and two variables. Zesz. Nauk., Politech. Łódź. 413, Mat. 16 (1983), 33-40. | MR | JFM

[18] Pawlak, R. J.: Przekszta{ł}cenia Darboux. Dissertation, Łódź University (1985), Polish.

[19] Poreda, W., Wagner-Bojakowska, E., Wilczyński, W.: A category analogue of the density topology. Fundam. Math. 125 (1985), 167-173. | DOI | MR | JFM

[20] Thielman, H. P.: Types of functions. Am. Math. Mon. 60 (1953), 156-161. | DOI | MR | JFM

[21] Wódka, J.: Subsets of some families of real functions and their algebrability. Linear Algebra Appl. 459 (2014), 454-464. | DOI | MR | JFM

[22] Wódka, J.: On the uniform limits of sequences of Świątkowski functions. Lith. Math. J. 57 (2017), 259-265. | DOI | MR | JFM

Cité par Sources :