Weighted generalization of the Ramadanov's theorem and further considerations
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 829-842 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space $\mathbb C^N$, and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this property, which will give a characterization of the domains, for which the inverse of the Ramadanov's theorem holds.
We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space $\mathbb C^N$, and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this property, which will give a characterization of the domains, for which the inverse of the Ramadanov's theorem holds.
DOI : 10.21136/CMJ.2018.0010-17
Classification : 32A25, 32A36
Keywords: weighted Bergman kernel; admissible weight; sequence of domains
@article{10_21136_CMJ_2018_0010_17,
     author = {Pasternak-Winiarski, Zbigniew and W\'ojcicki, Pawe{\l}},
     title = {Weighted generalization of the {Ramadanov's} theorem and further considerations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {829--842},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0010-17},
     mrnumber = {3851894},
     zbl = {06986975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0010-17/}
}
TY  - JOUR
AU  - Pasternak-Winiarski, Zbigniew
AU  - Wójcicki, Paweł
TI  - Weighted generalization of the Ramadanov's theorem and further considerations
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 829
EP  - 842
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0010-17/
DO  - 10.21136/CMJ.2018.0010-17
LA  - en
ID  - 10_21136_CMJ_2018_0010_17
ER  - 
%0 Journal Article
%A Pasternak-Winiarski, Zbigniew
%A Wójcicki, Paweł
%T Weighted generalization of the Ramadanov's theorem and further considerations
%J Czechoslovak Mathematical Journal
%D 2018
%P 829-842
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0010-17/
%R 10.21136/CMJ.2018.0010-17
%G en
%F 10_21136_CMJ_2018_0010_17
Pasternak-Winiarski, Zbigniew; Wójcicki, Paweł. Weighted generalization of the Ramadanov's theorem and further considerations. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 829-842. doi: 10.21136/CMJ.2018.0010-17

[1] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68 (1950), 337-404. | DOI | MR | JFM

[2] Bergman, S.: The Kernel Function and Conformal Mapping. Mathematical Surveys 5, American Mathematical Society, Providence (1970). | DOI | MR | JFM

[3] Boas, H. P.: Counterexample to the Lu Qi-Keng conjecture. Proc. Am. Math. Soc. 97 (1986), 374-375. | DOI | MR | JFM

[4] Engliš, M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227 (2002), 211-241. | DOI | MR | JFM

[5] Engliš, M.: Toeplitz operators and weighted Bergman kernels. J. Funct. Anal. 255 (2008), 1419-1457. | DOI | MR | JFM

[6] Forelli, F., Rudin, W.: Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 24 (1974), 593-602. | DOI | MR | JFM

[7] Jacobson, R. L.: Weighted Bergman Kernel Functions and the Lu Qi-keng Problem. Thesis (Ph.D.). A&M University, Texas (2012). | MR

[8] Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). | DOI | MR | JFM

[9] Krantz, S. G.: Function Theory of Several Complex Variables. American Mathematical Society, Providence (2001). | DOI | MR | JFM

[10] Krantz, S. G.: Geometric Analysis of the Bergman Kernel and Metric. Graduate Texts in Mathematics 268, Springer, New York (2013). | DOI | MR | JFM

[11] Ligocka, E.: On the Forelli-Rudin construction and weighted Bergman projections. Stud. Math. 94 (1989), 257-272. | DOI | MR | JFM

[12] Odzijewicz, A.: On reproducing kernels and quantization of states. Commun. Math. Phys. 114 (1988), 577-597. | DOI | MR | JFM

[13] Pasternak-Winiarski, Z.: On the dependence of the reproducing kernel on the weight of integration. J. Funct. Anal. 94 (1990), 110-134. | DOI | MR | JFM

[14] Pasternak-Winiarski, Z.: On weights which admit the reproducing kernel of Bergman type. Int. J. Math. Math. Sci. 15 (1992), 1-14. | DOI | MR | JFM

[15] Ramadanov, I.: Sur une propriété de la fonction de Bergman. C. R. Acad. Bulg. Sci. 20 (1967), 759-762 French. | MR | JFM

[16] Shabat, B. V.: Introduction to Complex Analysis. Part II: Functions of Several Variables. Translations of Mathematical Monographs 110, American Mathematical Society, Providence (1992). | DOI | MR | JFM

[17] Skwarczyński, M.: Biholomorphic invariants related to the Bergman function. Diss. Math. 173 (1980), 59 pages. | MR | JFM

[18] Skwarczyński, M., Iwiński, T.: The convergence of Bergman functions for a decreasing sequence of domains. Approximation Theory. Proc. Conf. Poznan 1972 Z. Ciesielski, J. Musielak D. Reidel, Dordrecht (1975), 117-120. | MR | JFM

[19] Skwarczyński, M., Mazur, T.: Wstepne twierdzenia teorii funkcji wielu zmiennych zespolonych. Wydawnictwo Krzysztof Biesaga, Warszawa (2001), Polish.

[20] Wójcicki, P. M.: Weighted Bergman kernel function, admissible weights and the Ramadanov theorem. Mat. Stud. 42 (2014), 160-164. | MR | JFM

Cité par Sources :