Keywords: weighted Bergman kernel; admissible weight; sequence of domains
@article{10_21136_CMJ_2018_0010_17,
author = {Pasternak-Winiarski, Zbigniew and W\'ojcicki, Pawe{\l}},
title = {Weighted generalization of the {Ramadanov's} theorem and further considerations},
journal = {Czechoslovak Mathematical Journal},
pages = {829--842},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2018.0010-17},
mrnumber = {3851894},
zbl = {06986975},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0010-17/}
}
TY - JOUR AU - Pasternak-Winiarski, Zbigniew AU - Wójcicki, Paweł TI - Weighted generalization of the Ramadanov's theorem and further considerations JO - Czechoslovak Mathematical Journal PY - 2018 SP - 829 EP - 842 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0010-17/ DO - 10.21136/CMJ.2018.0010-17 LA - en ID - 10_21136_CMJ_2018_0010_17 ER -
%0 Journal Article %A Pasternak-Winiarski, Zbigniew %A Wójcicki, Paweł %T Weighted generalization of the Ramadanov's theorem and further considerations %J Czechoslovak Mathematical Journal %D 2018 %P 829-842 %V 68 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0010-17/ %R 10.21136/CMJ.2018.0010-17 %G en %F 10_21136_CMJ_2018_0010_17
Pasternak-Winiarski, Zbigniew; Wójcicki, Paweł. Weighted generalization of the Ramadanov's theorem and further considerations. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 829-842. doi: 10.21136/CMJ.2018.0010-17
[1] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68 (1950), 337-404. | DOI | MR | JFM
[2] Bergman, S.: The Kernel Function and Conformal Mapping. Mathematical Surveys 5, American Mathematical Society, Providence (1970). | DOI | MR | JFM
[3] Boas, H. P.: Counterexample to the Lu Qi-Keng conjecture. Proc. Am. Math. Soc. 97 (1986), 374-375. | DOI | MR | JFM
[4] Engliš, M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227 (2002), 211-241. | DOI | MR | JFM
[5] Engliš, M.: Toeplitz operators and weighted Bergman kernels. J. Funct. Anal. 255 (2008), 1419-1457. | DOI | MR | JFM
[6] Forelli, F., Rudin, W.: Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 24 (1974), 593-602. | DOI | MR | JFM
[7] Jacobson, R. L.: Weighted Bergman Kernel Functions and the Lu Qi-keng Problem. Thesis (Ph.D.). A&M University, Texas (2012). | MR
[8] Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). | DOI | MR | JFM
[9] Krantz, S. G.: Function Theory of Several Complex Variables. American Mathematical Society, Providence (2001). | DOI | MR | JFM
[10] Krantz, S. G.: Geometric Analysis of the Bergman Kernel and Metric. Graduate Texts in Mathematics 268, Springer, New York (2013). | DOI | MR | JFM
[11] Ligocka, E.: On the Forelli-Rudin construction and weighted Bergman projections. Stud. Math. 94 (1989), 257-272. | DOI | MR | JFM
[12] Odzijewicz, A.: On reproducing kernels and quantization of states. Commun. Math. Phys. 114 (1988), 577-597. | DOI | MR | JFM
[13] Pasternak-Winiarski, Z.: On the dependence of the reproducing kernel on the weight of integration. J. Funct. Anal. 94 (1990), 110-134. | DOI | MR | JFM
[14] Pasternak-Winiarski, Z.: On weights which admit the reproducing kernel of Bergman type. Int. J. Math. Math. Sci. 15 (1992), 1-14. | DOI | MR | JFM
[15] Ramadanov, I.: Sur une propriété de la fonction de Bergman. C. R. Acad. Bulg. Sci. 20 (1967), 759-762 French. | MR | JFM
[16] Shabat, B. V.: Introduction to Complex Analysis. Part II: Functions of Several Variables. Translations of Mathematical Monographs 110, American Mathematical Society, Providence (1992). | DOI | MR | JFM
[17] Skwarczyński, M.: Biholomorphic invariants related to the Bergman function. Diss. Math. 173 (1980), 59 pages. | MR | JFM
[18] Skwarczyński, M., Iwiński, T.: The convergence of Bergman functions for a decreasing sequence of domains. Approximation Theory. Proc. Conf. Poznan 1972 Z. Ciesielski, J. Musielak D. Reidel, Dordrecht (1975), 117-120. | MR | JFM
[19] Skwarczyński, M., Mazur, T.: Wstepne twierdzenia teorii funkcji wielu zmiennych zespolonych. Wydawnictwo Krzysztof Biesaga, Warszawa (2001), Polish.
[20] Wójcicki, P. M.: Weighted Bergman kernel function, admissible weights and the Ramadanov theorem. Mat. Stud. 42 (2014), 160-164. | MR | JFM
Cité par Sources :