On the nilpotent residuals of all subalgebras of Lie algebras
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 817-828
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathcal {N}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb {F}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal {N}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^{\mathcal {N}}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _{H\leq L}I_L(H^{\mathcal {N}})$. Set $S_0(L) = 0$. Define $S_{i+1}(L)/S_i (L) =S(L/S_i (L))$ for $i \geq 1$. By $S_{\infty }(L)$ denote the terminal term of the ascending series. It is proved that $L= S_{\infty }(L)$ if and only if $L^{\mathcal {N}}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$.
DOI :
10.21136/CMJ.2018.0006-17
Classification :
17B05, 17B20, 17B30, 17B50
Keywords: solvable Lie algebra; nilpotent residual; Frattini ideal
Keywords: solvable Lie algebra; nilpotent residual; Frattini ideal
@article{10_21136_CMJ_2018_0006_17,
author = {Meng, Wei and Yao, Hailou},
title = {On the nilpotent residuals of all subalgebras of {Lie} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {817--828},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2018},
doi = {10.21136/CMJ.2018.0006-17},
mrnumber = {3851893},
zbl = {06986974},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/}
}
TY - JOUR AU - Meng, Wei AU - Yao, Hailou TI - On the nilpotent residuals of all subalgebras of Lie algebras JO - Czechoslovak Mathematical Journal PY - 2018 SP - 817 EP - 828 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/ DO - 10.21136/CMJ.2018.0006-17 LA - en ID - 10_21136_CMJ_2018_0006_17 ER -
%0 Journal Article %A Meng, Wei %A Yao, Hailou %T On the nilpotent residuals of all subalgebras of Lie algebras %J Czechoslovak Mathematical Journal %D 2018 %P 817-828 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/ %R 10.21136/CMJ.2018.0006-17 %G en %F 10_21136_CMJ_2018_0006_17
Meng, Wei; Yao, Hailou. On the nilpotent residuals of all subalgebras of Lie algebras. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 817-828. doi: 10.21136/CMJ.2018.0006-17
Cité par Sources :