On the nilpotent residuals of all subalgebras of Lie algebras
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 817-828
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {N}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb {F}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal {N}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^{\mathcal {N}}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _{H\leq L}I_L(H^{\mathcal {N}})$. Set $S_0(L) = 0$. Define $S_{i+1}(L)/S_i (L) =S(L/S_i (L))$ for $i \geq 1$. By $S_{\infty }(L)$ denote the terminal term of the ascending series. It is proved that $L= S_{\infty }(L)$ if and only if $L^{\mathcal {N}}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$.
Let $\mathcal {N}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb {F}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal {N}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^{\mathcal {N}}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _{H\leq L}I_L(H^{\mathcal {N}})$. Set $S_0(L) = 0$. Define $S_{i+1}(L)/S_i (L) =S(L/S_i (L))$ for $i \geq 1$. By $S_{\infty }(L)$ denote the terminal term of the ascending series. It is proved that $L= S_{\infty }(L)$ if and only if $L^{\mathcal {N}}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$.
DOI : 10.21136/CMJ.2018.0006-17
Classification : 17B05, 17B20, 17B30, 17B50
Keywords: solvable Lie algebra; nilpotent residual; Frattini ideal
@article{10_21136_CMJ_2018_0006_17,
     author = {Meng, Wei and Yao, Hailou},
     title = {On the nilpotent residuals of all subalgebras of {Lie} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {817--828},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0006-17},
     mrnumber = {3851893},
     zbl = {06986974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/}
}
TY  - JOUR
AU  - Meng, Wei
AU  - Yao, Hailou
TI  - On the nilpotent residuals of all subalgebras of Lie algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 817
EP  - 828
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/
DO  - 10.21136/CMJ.2018.0006-17
LA  - en
ID  - 10_21136_CMJ_2018_0006_17
ER  - 
%0 Journal Article
%A Meng, Wei
%A Yao, Hailou
%T On the nilpotent residuals of all subalgebras of Lie algebras
%J Czechoslovak Mathematical Journal
%D 2018
%P 817-828
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/
%R 10.21136/CMJ.2018.0006-17
%G en
%F 10_21136_CMJ_2018_0006_17
Meng, Wei; Yao, Hailou. On the nilpotent residuals of all subalgebras of Lie algebras. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 817-828. doi: 10.21136/CMJ.2018.0006-17

[1] Barnes, D. W.: Nilpotency of Lie algebras. Math. Z. 79 (1962), 237-238. | DOI | MR | JFM

[2] Barnes, D. W.: On the cohomology of soluble Lie algebras. Math. Z. 101 (1967), 343-349. | DOI | MR | JFM

[3] Barnes, D. W.: The Frattini argument for Lie algebras. Math. Z. 133 (1973), 277-283. | DOI | MR | JFM

[4] Barnes, D. W., Gastineau-Hills, H. M.: On the theory of soluble Lie algebras. Math. Z. 106 (1968), 343-354. | DOI | MR | JFM

[5] Barnes, D. W., Newell, M. L.: Some theorems on saturated homomorphs of solvable Lie algebras. Math. Z. 115 (1970), 179-187. | DOI | MR | JFM

[6] Chen, L., Meng, D.: On the intersection of maximal subalgebras in a Lie superalgebra. Algebra Colloq. 16 (2009), 503-516. | DOI | MR | JFM

[7] Gong, L., Guo, X.: On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group. Algebra Colloq. 20 (2013), 349-360. | DOI | MR | JFM

[8] Gong, L., Guo, X.: On normalizers of the nilpotent residuals of subgroups of a finite group. Bull. Malays. Math. Sci. Soc. (2) 39 (2016), 957-970. | DOI | MR | JFM

[9] Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics 9, Springer, New York (1972). | DOI | MR | JFM

[10] Marshall, E. I.: The Frattini subalgebra of a Lie algebra. J. Lond. Math. Soc. 42 (1967), 416-422. | DOI | MR | JFM

[11] Schwarck, F.: Die Frattini-Algebra einer Lie-Algebra. Dissertation, Universität Kiel, Kiel German (1963).

[12] Shen, Z., Shi, W., Qian, G.: On the norm of the nilpotent residuals of all subgroups of a finite group. J. Algebra 352 (2012), 290-298. | DOI | MR | JFM

[13] Stitzinger, E. L.: On the Frattini subalgebra of a Lie algebra. J. Lond. Math. Soc., II. Ser. 2 (1970), 429-438. | DOI | MR | JFM

[14] Stitzinger, E. L.: Covering-avoidance for saturated formations of solvable Lie algebras. Math. Z. 124 (1982), 237-249. | DOI | MR | JFM

[15] Su, N., Wang, Y.: On the normalizers of $\frak{F}$-residuals of all subgroups of a finite group. J. Algebra 392 (2013), 185-198. | DOI | MR | JFM

[16] Towers, D. A.: A Frattini theory for algebras. Proc. Lond. Math. Soc., III. Ser. 27 (1973), 440-462. | DOI | MR | JFM

[17] Towers, D. A.: Elementary Lie algebras. J. Lond. Math. Soc., II. Ser. 7 (1973), 295-302. | DOI | MR | JFM

[18] Towers, D. A.: $c$-ideals of Lie algebras. Commun. Algebra 37 (2009), 4366-4373. | DOI | MR | JFM

[19] Towers, D. A.: The index complex of a maximal subalgebra of a Lie algebra. Proc. Edinb. Math. Soc., II. Ser. 54 (2011), 531-542. | DOI | MR | JFM

[20] Towers, D. A.: Solvable complemented Lie algebras. Proc. Am. Math. Soc. 140 (2012), 3823-3830. | DOI | MR | JFM

Cité par Sources :