On the nilpotent residuals of all subalgebras of Lie algebras
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 817-828.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal {N}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb {F}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal {N}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^{\mathcal {N}}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _{H\leq L}I_L(H^{\mathcal {N}})$. Set $S_0(L) = 0$. Define $S_{i+1}(L)/S_i (L) =S(L/S_i (L))$ for $i \geq 1$. By $S_{\infty }(L)$ denote the terminal term of the ascending series. It is proved that $L= S_{\infty }(L)$ if and only if $L^{\mathcal {N}}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$.
DOI : 10.21136/CMJ.2018.0006-17
Classification : 17B05, 17B20, 17B30, 17B50
Keywords: solvable Lie algebra; nilpotent residual; Frattini ideal
@article{10_21136_CMJ_2018_0006_17,
     author = {Meng, Wei and Yao, Hailou},
     title = {On the nilpotent residuals of all subalgebras of {Lie} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {817--828},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2018},
     doi = {10.21136/CMJ.2018.0006-17},
     mrnumber = {3851893},
     zbl = {06986974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/}
}
TY  - JOUR
AU  - Meng, Wei
AU  - Yao, Hailou
TI  - On the nilpotent residuals of all subalgebras of Lie algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 817
EP  - 828
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/
DO  - 10.21136/CMJ.2018.0006-17
LA  - en
ID  - 10_21136_CMJ_2018_0006_17
ER  - 
%0 Journal Article
%A Meng, Wei
%A Yao, Hailou
%T On the nilpotent residuals of all subalgebras of Lie algebras
%J Czechoslovak Mathematical Journal
%D 2018
%P 817-828
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/
%R 10.21136/CMJ.2018.0006-17
%G en
%F 10_21136_CMJ_2018_0006_17
Meng, Wei; Yao, Hailou. On the nilpotent residuals of all subalgebras of Lie algebras. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 817-828. doi : 10.21136/CMJ.2018.0006-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0006-17/

Cité par Sources :