A new characterization of symmetric group by NSE
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 427-437
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a group and $\omega (G)$ be the set of element orders of $G$. Let $k\in \omega (G)$ and $m_k(G)$ be the number of elements of order $k$ in $G$. Let nse$(G) = \{m_k(G) \colon k \in \omega (G)\}$. Assume $r$ is a prime number and let $G$ be a group such that nse$(G)=$ nse$(S_r)$, where $S_r$ is the symmetric group of degree $r$. In this paper we prove that $G\cong S_r$, if $r$ divides the order of $G$ and $r^2$ does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.
Let $G$ be a group and $\omega (G)$ be the set of element orders of $G$. Let $k\in \omega (G)$ and $m_k(G)$ be the number of elements of order $k$ in $G$. Let nse$(G) = \{m_k(G) \colon k \in \omega (G)\}$. Assume $r$ is a prime number and let $G$ be a group such that nse$(G)=$ nse$(S_r)$, where $S_r$ is the symmetric group of degree $r$. In this paper we prove that $G\cong S_r$, if $r$ divides the order of $G$ and $r^2$ does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.
DOI : 10.21136/CMJ.2017.0700-15
Classification : 20D06, 20D15
Keywords: set of the numbers of elements of the same order; prime graph
@article{10_21136_CMJ_2017_0700_15,
     author = {Babai, Azam and Akhlaghi, Zeinab},
     title = {A new characterization of symmetric group by {NSE}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {427--437},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0700-15},
     mrnumber = {3661051},
     zbl = {06738529},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0700-15/}
}
TY  - JOUR
AU  - Babai, Azam
AU  - Akhlaghi, Zeinab
TI  - A new characterization of symmetric group by NSE
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 427
EP  - 437
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0700-15/
DO  - 10.21136/CMJ.2017.0700-15
LA  - en
ID  - 10_21136_CMJ_2017_0700_15
ER  - 
%0 Journal Article
%A Babai, Azam
%A Akhlaghi, Zeinab
%T A new characterization of symmetric group by NSE
%J Czechoslovak Mathematical Journal
%D 2017
%P 427-437
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0700-15/
%R 10.21136/CMJ.2017.0700-15
%G en
%F 10_21136_CMJ_2017_0700_15
Babai, Azam; Akhlaghi, Zeinab. A new characterization of symmetric group by NSE. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 427-437. doi: 10.21136/CMJ.2017.0700-15

[1] Ahanjideh, N., Asadian, B.: NSE characterization of some alternating groups. J. Algebra Appl. 14 (2015), Article ID 1550012, 14 pages. | DOI | MR | JFM

[2] Asboei, A. K.: A new characterization of PGL$(2,p)$. J. Algebra Appl. 12 (2013), Article ID 1350040, 5 pages. | DOI | MR | JFM

[3] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A characterization of symmetric group $S_r$, where $r$ is prime number. Ann. Math. Inform. 40 (2012), 13-23. | MR | JFM

[4] Frobenius, G.: Verallgemeinerung des Sylow'schen Satzes. Berl. Ber. (1895), 981-993 German \99999JFM99999 26.0158.01. | DOI

[5] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). | MR | JFM

[6] Gruenberg, K. W., Roggenkamp, K. W.: Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. Lond. Math. Soc., III. Ser. 31 (1975), 149-166. | DOI | MR | JFM

[7] M. Hall, Jr.: The Theory of Groups. The Macmillan Company, New York (1959). | MR | JFM

[8] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). | DOI | MR | JFM

[9] Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups. Monatsh. Math. 163 (2011), 39-50. | DOI | MR | JFM

[10] Kondrat'ev, A. S., Mazurov, V. D.: Recognition of alternating groups of prime degree from their element orders. Sib. Math. J. 41 (2000), 294-302 translation from Sib. Mat. Zh. 41 359-369 Russian 2000. | DOI | MR | JFM

[11] Shao, C., Jiang, Q.: A new characterization of some linear groups by nse. J. Algebra Appl. 13 (2014), Article ID 1350094, 9 pages. | DOI | MR | JFM

[12] Shi, W. J.: A new characterization of the sporadic simple groups. Group Theory Proc. Conf., Singapore, 1987, Walter de Gruyter, Berlin (1989), 531-540. | DOI | MR | JFM

[13] Weisner, L.: On the Sylow subgroups of the symmetric and alternating groups. Am. J. Math. 47 (1925), 121-124 \99999JFM99999 51.0117.02. | DOI | MR

Cité par Sources :