Keywords: set of the numbers of elements of the same order; prime graph
@article{10_21136_CMJ_2017_0700_15,
author = {Babai, Azam and Akhlaghi, Zeinab},
title = {A new characterization of symmetric group by {NSE}},
journal = {Czechoslovak Mathematical Journal},
pages = {427--437},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0700-15},
mrnumber = {3661051},
zbl = {06738529},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0700-15/}
}
TY - JOUR AU - Babai, Azam AU - Akhlaghi, Zeinab TI - A new characterization of symmetric group by NSE JO - Czechoslovak Mathematical Journal PY - 2017 SP - 427 EP - 437 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0700-15/ DO - 10.21136/CMJ.2017.0700-15 LA - en ID - 10_21136_CMJ_2017_0700_15 ER -
%0 Journal Article %A Babai, Azam %A Akhlaghi, Zeinab %T A new characterization of symmetric group by NSE %J Czechoslovak Mathematical Journal %D 2017 %P 427-437 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0700-15/ %R 10.21136/CMJ.2017.0700-15 %G en %F 10_21136_CMJ_2017_0700_15
Babai, Azam; Akhlaghi, Zeinab. A new characterization of symmetric group by NSE. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 427-437. doi: 10.21136/CMJ.2017.0700-15
[1] Ahanjideh, N., Asadian, B.: NSE characterization of some alternating groups. J. Algebra Appl. 14 (2015), Article ID 1550012, 14 pages. | DOI | MR | JFM
[2] Asboei, A. K.: A new characterization of PGL$(2,p)$. J. Algebra Appl. 12 (2013), Article ID 1350040, 5 pages. | DOI | MR | JFM
[3] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A characterization of symmetric group $S_r$, where $r$ is prime number. Ann. Math. Inform. 40 (2012), 13-23. | MR | JFM
[4] Frobenius, G.: Verallgemeinerung des Sylow'schen Satzes. Berl. Ber. (1895), 981-993 German \99999JFM99999 26.0158.01. | DOI
[5] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). | MR | JFM
[6] Gruenberg, K. W., Roggenkamp, K. W.: Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. Lond. Math. Soc., III. Ser. 31 (1975), 149-166. | DOI | MR | JFM
[7] M. Hall, Jr.: The Theory of Groups. The Macmillan Company, New York (1959). | MR | JFM
[8] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). | DOI | MR | JFM
[9] Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups. Monatsh. Math. 163 (2011), 39-50. | DOI | MR | JFM
[10] Kondrat'ev, A. S., Mazurov, V. D.: Recognition of alternating groups of prime degree from their element orders. Sib. Math. J. 41 (2000), 294-302 translation from Sib. Mat. Zh. 41 359-369 Russian 2000. | DOI | MR | JFM
[11] Shao, C., Jiang, Q.: A new characterization of some linear groups by nse. J. Algebra Appl. 13 (2014), Article ID 1350094, 9 pages. | DOI | MR | JFM
[12] Shi, W. J.: A new characterization of the sporadic simple groups. Group Theory Proc. Conf., Singapore, 1987, Walter de Gruyter, Berlin (1989), 531-540. | DOI | MR | JFM
[13] Weisner, L.: On the Sylow subgroups of the symmetric and alternating groups. Am. J. Math. 47 (1925), 121-124 \99999JFM99999 51.0117.02. | DOI | MR
Cité par Sources :