Keywords: idempotent element; nilpotent element; nil clean ring; weakly nil clean ring
@article{10_21136_CMJ_2017_0677_15,
author = {Ashrafi, Nahid and Sheibani, Marjan and Chen, Huanyin},
title = {Certain decompositions of matrices over {Abelian} rings},
journal = {Czechoslovak Mathematical Journal},
pages = {417--425},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0677-15},
mrnumber = {3661050},
zbl = {06738528},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/}
}
TY - JOUR AU - Ashrafi, Nahid AU - Sheibani, Marjan AU - Chen, Huanyin TI - Certain decompositions of matrices over Abelian rings JO - Czechoslovak Mathematical Journal PY - 2017 SP - 417 EP - 425 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/ DO - 10.21136/CMJ.2017.0677-15 LA - en ID - 10_21136_CMJ_2017_0677_15 ER -
%0 Journal Article %A Ashrafi, Nahid %A Sheibani, Marjan %A Chen, Huanyin %T Certain decompositions of matrices over Abelian rings %J Czechoslovak Mathematical Journal %D 2017 %P 417-425 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/ %R 10.21136/CMJ.2017.0677-15 %G en %F 10_21136_CMJ_2017_0677_15
Ashrafi, Nahid; Sheibani, Marjan; Chen, Huanyin. Certain decompositions of matrices over Abelian rings. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 417-425. doi: 10.21136/CMJ.2017.0677-15
[1] Ahn, M.-S., Anderson, D. D.: Weakly clean rings and almost clean rings. Rocky Mt. J. Math. 36 (2006), 783-798. | DOI | MR | JFM
[2] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent. Commun. Algebra 30 (2002), 3327-3336. | DOI | MR | JFM
[3] Andrica, D., Călugăreanu, G.: A nil-clean $2\times 2$ matrix over the integers which is not clean. J. Algebra Appl. 13 (2014), Article ID 1450009, 9 pages. | DOI | MR | JFM
[4] Breaz, S., Călugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings. Linear Algebra Appl. 439 (2013), 3115-3119. | DOI | MR | JFM
[5] Breaz, S., Danchev, P., Zhou, Y.: Rings in which every element is either a sum or a difference of a nilpotent and an idempotent. J. Algebra Appl. 15 (2016), Article ID 1650148, 11 pages. | DOI | MR | JFM
[6] Burgess, W. D., Stephenson, W.: Rings all of whose Pierce stalks are local. Canad. Math. Bull. 22 (1979), 159-164. | DOI | MR | JFM
[7] Chacron, M.: On a theorem of Herstein. Can. J. Math. 21 (1969), 1348-1353. | DOI | MR | JFM
[8] Chen, H.: Rings Related to Stable Range Conditions. Series in Algebra 11, World Scientific, Hackensack (2011). | MR | JFM
[9] Danchev, P. V., McGovern, W. W.: Commutative weakly nil clean unital rings. J. Algebra Appl. 425 (2015), 410-422. | DOI | MR | JFM
[10] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. | DOI | MR | JFM
[11] Koşan, M. T., Lee, T.-K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?. Linear Algebra Appl. 450 (2014), 7-12. | DOI | MR | JFM
[12] McGovern, W. W., Raja, S., Sharp, A.: Commutative nil clean group rings. J. Algebra Appl. 14 (2015), Article ID 1550094, 5 pages. | DOI | MR | JFM
[13] Nicholson, W. K.: Lifting idempotents and exchange rings. Trans. Am. Math. Soc. 229 (1977), 269-278. | DOI | MR | JFM
[14] Yu, H.-P.: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. | DOI | MR | JFM
Cité par Sources :