Certain decompositions of matrices over Abelian rings
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 417-425
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in {\Bbb N}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\Bbb Z}_3$, $B$ or ${\Bbb Z}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\geq 2$.
A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in {\Bbb N}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\Bbb Z}_3$, $B$ or ${\Bbb Z}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\geq 2$.
DOI :
10.21136/CMJ.2017.0677-15
Classification :
16E50, 16S34, 16U10
Keywords: idempotent element; nilpotent element; nil clean ring; weakly nil clean ring
Keywords: idempotent element; nilpotent element; nil clean ring; weakly nil clean ring
@article{10_21136_CMJ_2017_0677_15,
author = {Ashrafi, Nahid and Sheibani, Marjan and Chen, Huanyin},
title = {Certain decompositions of matrices over {Abelian} rings},
journal = {Czechoslovak Mathematical Journal},
pages = {417--425},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0677-15},
mrnumber = {3661050},
zbl = {06738528},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/}
}
TY - JOUR AU - Ashrafi, Nahid AU - Sheibani, Marjan AU - Chen, Huanyin TI - Certain decompositions of matrices over Abelian rings JO - Czechoslovak Mathematical Journal PY - 2017 SP - 417 EP - 425 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/ DO - 10.21136/CMJ.2017.0677-15 LA - en ID - 10_21136_CMJ_2017_0677_15 ER -
%0 Journal Article %A Ashrafi, Nahid %A Sheibani, Marjan %A Chen, Huanyin %T Certain decompositions of matrices over Abelian rings %J Czechoslovak Mathematical Journal %D 2017 %P 417-425 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/ %R 10.21136/CMJ.2017.0677-15 %G en %F 10_21136_CMJ_2017_0677_15
Ashrafi, Nahid; Sheibani, Marjan; Chen, Huanyin. Certain decompositions of matrices over Abelian rings. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 417-425. doi: 10.21136/CMJ.2017.0677-15
Cité par Sources :