Certain decompositions of matrices over Abelian rings
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 417-425
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in {\Bbb N}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\Bbb Z}_3$, $B$ or ${\Bbb Z}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\geq 2$.
A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in {\Bbb N}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\Bbb Z}_3$, $B$ or ${\Bbb Z}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\geq 2$.
DOI : 10.21136/CMJ.2017.0677-15
Classification : 16E50, 16S34, 16U10
Keywords: idempotent element; nilpotent element; nil clean ring; weakly nil clean ring
@article{10_21136_CMJ_2017_0677_15,
     author = {Ashrafi, Nahid and Sheibani, Marjan and Chen, Huanyin},
     title = {Certain decompositions of matrices over {Abelian} rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {417--425},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0677-15},
     mrnumber = {3661050},
     zbl = {06738528},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/}
}
TY  - JOUR
AU  - Ashrafi, Nahid
AU  - Sheibani, Marjan
AU  - Chen, Huanyin
TI  - Certain decompositions of matrices over Abelian rings
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 417
EP  - 425
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/
DO  - 10.21136/CMJ.2017.0677-15
LA  - en
ID  - 10_21136_CMJ_2017_0677_15
ER  - 
%0 Journal Article
%A Ashrafi, Nahid
%A Sheibani, Marjan
%A Chen, Huanyin
%T Certain decompositions of matrices over Abelian rings
%J Czechoslovak Mathematical Journal
%D 2017
%P 417-425
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0677-15/
%R 10.21136/CMJ.2017.0677-15
%G en
%F 10_21136_CMJ_2017_0677_15
Ashrafi, Nahid; Sheibani, Marjan; Chen, Huanyin. Certain decompositions of matrices over Abelian rings. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 417-425. doi: 10.21136/CMJ.2017.0677-15

[1] Ahn, M.-S., Anderson, D. D.: Weakly clean rings and almost clean rings. Rocky Mt. J. Math. 36 (2006), 783-798. | DOI | MR | JFM

[2] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent. Commun. Algebra 30 (2002), 3327-3336. | DOI | MR | JFM

[3] Andrica, D., Călugăreanu, G.: A nil-clean $2\times 2$ matrix over the integers which is not clean. J. Algebra Appl. 13 (2014), Article ID 1450009, 9 pages. | DOI | MR | JFM

[4] Breaz, S., Călugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings. Linear Algebra Appl. 439 (2013), 3115-3119. | DOI | MR | JFM

[5] Breaz, S., Danchev, P., Zhou, Y.: Rings in which every element is either a sum or a difference of a nilpotent and an idempotent. J. Algebra Appl. 15 (2016), Article ID 1650148, 11 pages. | DOI | MR | JFM

[6] Burgess, W. D., Stephenson, W.: Rings all of whose Pierce stalks are local. Canad. Math. Bull. 22 (1979), 159-164. | DOI | MR | JFM

[7] Chacron, M.: On a theorem of Herstein. Can. J. Math. 21 (1969), 1348-1353. | DOI | MR | JFM

[8] Chen, H.: Rings Related to Stable Range Conditions. Series in Algebra 11, World Scientific, Hackensack (2011). | MR | JFM

[9] Danchev, P. V., McGovern, W. W.: Commutative weakly nil clean unital rings. J. Algebra Appl. 425 (2015), 410-422. | DOI | MR | JFM

[10] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. | DOI | MR | JFM

[11] Koşan, M. T., Lee, T.-K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?. Linear Algebra Appl. 450 (2014), 7-12. | DOI | MR | JFM

[12] McGovern, W. W., Raja, S., Sharp, A.: Commutative nil clean group rings. J. Algebra Appl. 14 (2015), Article ID 1550094, 5 pages. | DOI | MR | JFM

[13] Nicholson, W. K.: Lifting idempotents and exchange rings. Trans. Am. Math. Soc. 229 (1977), 269-278. | DOI | MR | JFM

[14] Yu, H.-P.: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. | DOI | MR | JFM

Cité par Sources :