Keywords: rational surface; minuscule representation; polytope
@article{10_21136_CMJ_2017_0676_15,
author = {Lee, Jae-Hyouk and Xu, Mang and Zhang, Jiajin},
title = {Polytopes, quasi-minuscule representations and rational surfaces},
journal = {Czechoslovak Mathematical Journal},
pages = {397--415},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0676-15},
mrnumber = {3661049},
zbl = {06738527},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0676-15/}
}
TY - JOUR AU - Lee, Jae-Hyouk AU - Xu, Mang AU - Zhang, Jiajin TI - Polytopes, quasi-minuscule representations and rational surfaces JO - Czechoslovak Mathematical Journal PY - 2017 SP - 397 EP - 415 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0676-15/ DO - 10.21136/CMJ.2017.0676-15 LA - en ID - 10_21136_CMJ_2017_0676_15 ER -
%0 Journal Article %A Lee, Jae-Hyouk %A Xu, Mang %A Zhang, Jiajin %T Polytopes, quasi-minuscule representations and rational surfaces %J Czechoslovak Mathematical Journal %D 2017 %P 397-415 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0676-15/ %R 10.21136/CMJ.2017.0676-15 %G en %F 10_21136_CMJ_2017_0676_15
Lee, Jae-Hyouk; Xu, Mang; Zhang, Jiajin. Polytopes, quasi-minuscule representations and rational surfaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 397-415. doi: 10.21136/CMJ.2017.0676-15
[1] Bourbaki, N.: Elements of Mathematics. Lie Groups and Lie algebras. Chapters 4-6. Springer, Berlin (2002). | DOI | MR | JFM
[2] Coxeter, H. S. M.: Regular and semiregular polytopes. II. Math. Z. 188 (1985), 559-591. | DOI | MR | JFM
[3] Coxeter, H. S. M.: Regular and semi-regular polytopes. III. Math. Z. 200 (1988), 3-45. | DOI | MR | JFM
[4] Coxeter, H. S. M.: The evolution of Coxeter-Dynkin diagrams. Nieuw Arch. Wiskd., IV. Ser. 9 (1991), 233-248. | MR | JFM
[5] Demazure, M., Pinkham, H., (eds.), B. Teissier: Séminaire sur les Singularités des Surfaces. Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau 1976-1977, Lecture Notes in Mathematics 777, Springer, Berlin (1980), French. | DOI | MR | JFM
[6] Donagi, R. Y.: Principal bundles on elliptic fibrations. Asian J. Math. 1 (1997), 214-223. | DOI | MR | JFM
[7] Donagi, R.: Taniguchi lectures on principal bundles on elliptic fibrations. Integrable Systems and Algebraic Geometry Conf. Proc., Kobe/Kyoto, 1997, World Scientific, Singapore (1998), 33-46. | MR | JFM
[8] Friedman, R., Morgan, J., Witten, E.: Vector bundles and $F$ theory. Commun. Math. Phys. 187 (1997), 679-743. | DOI | MR | JFM
[9] Henry-Labordère, P., Julia, B., Paulot, L.: Borcherds symmetries in M-theory. J. High Energy Phys. 2002 (2002), No. 49, 31 pages. | DOI | MR
[10] Henry-Labordère, P., Julia, B., Paulot, L.: Real Borcherds superalgebras and M-theory. J. High Energy Phys. 2003 (2003), No. 60, 21 pages. | DOI | MR
[11] Lee, J.-H.: Gosset polytopes in Picard groups of del Pezzo surfaces. Can. J. Math. 64 (2012), 123-150. | DOI | MR | JFM
[12] Lee, J.-H.: Contractions of del Pezzo surfaces to $\mathbb P^{2}$ or $\mathbb P^{1}\times\mathbb P^{1}$. Rocky Mt. J. Math. 46 (2016), 1263-1273. | DOI | MR | JFM
[13] Leung, N. C.: ADE-bundle over rational surfaces, configuration of lines and rulings. Available at arXiv:math.AG/0009192.
[14] Leung, N. C., Xu, M., Zhang, J.: Kac-Moody $\widetilde E_k$-bundles over elliptic curves and del Pezzo surfaces with singularities of type $A$. Math. Ann. 352 (2012), 805-828. | DOI | MR | JFM
[15] Leung, N. C., Zhang, J.: Moduli of bundles over rational surfaces and elliptic curves. I: Simply laced cases. J. Lond. Math. Soc., II. Ser. 80 (2009), 750-770. | DOI | MR | JFM
[16] Looijenga, E.: Root systems and elliptic curves. Invent. Math. 38 (1976), 17-32. | DOI | MR | JFM
[17] Manin, Y. I.: Cubic Forms: Algebra, Geometry, Arithmetic. North-Holland Mathematical Library 4, North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1974). | MR | JFM
[18] Manivel, L.: Configurations of lines and models of Lie algebras. J. Algebra 304 (2006), 457-486. | DOI | MR | JFM
[19] Seshadri, C. S.: Geometry of $G/P$. I: Theory of standard monomials for minuscule representations. C. P. Ramanujam---A Tribute Tata Inst. Fundam. Res., Stud. Math. 8, Springer, Berlin (1978), 207-239. | MR | JFM
Cité par Sources :