Polytopes, quasi-minuscule representations and rational surfaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 397-415
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.
We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.
DOI : 10.21136/CMJ.2017.0676-15
Classification : 14J26, 14N20
Keywords: rational surface; minuscule representation; polytope
@article{10_21136_CMJ_2017_0676_15,
     author = {Lee, Jae-Hyouk and Xu, Mang and Zhang, Jiajin},
     title = {Polytopes, quasi-minuscule representations and rational surfaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {397--415},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0676-15},
     mrnumber = {3661049},
     zbl = {06738527},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0676-15/}
}
TY  - JOUR
AU  - Lee, Jae-Hyouk
AU  - Xu, Mang
AU  - Zhang, Jiajin
TI  - Polytopes, quasi-minuscule representations and rational surfaces
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 397
EP  - 415
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0676-15/
DO  - 10.21136/CMJ.2017.0676-15
LA  - en
ID  - 10_21136_CMJ_2017_0676_15
ER  - 
%0 Journal Article
%A Lee, Jae-Hyouk
%A Xu, Mang
%A Zhang, Jiajin
%T Polytopes, quasi-minuscule representations and rational surfaces
%J Czechoslovak Mathematical Journal
%D 2017
%P 397-415
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0676-15/
%R 10.21136/CMJ.2017.0676-15
%G en
%F 10_21136_CMJ_2017_0676_15
Lee, Jae-Hyouk; Xu, Mang; Zhang, Jiajin. Polytopes, quasi-minuscule representations and rational surfaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 397-415. doi: 10.21136/CMJ.2017.0676-15

[1] Bourbaki, N.: Elements of Mathematics. Lie Groups and Lie algebras. Chapters 4-6. Springer, Berlin (2002). | DOI | MR | JFM

[2] Coxeter, H. S. M.: Regular and semiregular polytopes. II. Math. Z. 188 (1985), 559-591. | DOI | MR | JFM

[3] Coxeter, H. S. M.: Regular and semi-regular polytopes. III. Math. Z. 200 (1988), 3-45. | DOI | MR | JFM

[4] Coxeter, H. S. M.: The evolution of Coxeter-Dynkin diagrams. Nieuw Arch. Wiskd., IV. Ser. 9 (1991), 233-248. | MR | JFM

[5] Demazure, M., Pinkham, H., (eds.), B. Teissier: Séminaire sur les Singularités des Surfaces. Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau 1976-1977, Lecture Notes in Mathematics 777, Springer, Berlin (1980), French. | DOI | MR | JFM

[6] Donagi, R. Y.: Principal bundles on elliptic fibrations. Asian J. Math. 1 (1997), 214-223. | DOI | MR | JFM

[7] Donagi, R.: Taniguchi lectures on principal bundles on elliptic fibrations. Integrable Systems and Algebraic Geometry Conf. Proc., Kobe/Kyoto, 1997, World Scientific, Singapore (1998), 33-46. | MR | JFM

[8] Friedman, R., Morgan, J., Witten, E.: Vector bundles and $F$ theory. Commun. Math. Phys. 187 (1997), 679-743. | DOI | MR | JFM

[9] Henry-Labordère, P., Julia, B., Paulot, L.: Borcherds symmetries in M-theory. J. High Energy Phys. 2002 (2002), No. 49, 31 pages. | DOI | MR

[10] Henry-Labordère, P., Julia, B., Paulot, L.: Real Borcherds superalgebras and M-theory. J. High Energy Phys. 2003 (2003), No. 60, 21 pages. | DOI | MR

[11] Lee, J.-H.: Gosset polytopes in Picard groups of del Pezzo surfaces. Can. J. Math. 64 (2012), 123-150. | DOI | MR | JFM

[12] Lee, J.-H.: Contractions of del Pezzo surfaces to $\mathbb P^{2}$ or $\mathbb P^{1}\times\mathbb P^{1}$. Rocky Mt. J. Math. 46 (2016), 1263-1273. | DOI | MR | JFM

[13] Leung, N. C.: ADE-bundle over rational surfaces, configuration of lines and rulings. Available at arXiv:math.AG/0009192.

[14] Leung, N. C., Xu, M., Zhang, J.: Kac-Moody $\widetilde E_k$-bundles over elliptic curves and del Pezzo surfaces with singularities of type $A$. Math. Ann. 352 (2012), 805-828. | DOI | MR | JFM

[15] Leung, N. C., Zhang, J.: Moduli of bundles over rational surfaces and elliptic curves. I: Simply laced cases. J. Lond. Math. Soc., II. Ser. 80 (2009), 750-770. | DOI | MR | JFM

[16] Looijenga, E.: Root systems and elliptic curves. Invent. Math. 38 (1976), 17-32. | DOI | MR | JFM

[17] Manin, Y. I.: Cubic Forms: Algebra, Geometry, Arithmetic. North-Holland Mathematical Library 4, North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1974). | MR | JFM

[18] Manivel, L.: Configurations of lines and models of Lie algebras. J. Algebra 304 (2006), 457-486. | DOI | MR | JFM

[19] Seshadri, C. S.: Geometry of $G/P$. I: Theory of standard monomials for minuscule representations. C. P. Ramanujam---A Tribute Tata Inst. Fundam. Res., Stud. Math. 8, Springer, Berlin (1978), 207-239. | MR | JFM

Cité par Sources :