Skew inverse power series rings over a ring with projective socle
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 389-395 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A ring $R$ is called a right $\rm PS$-ring if its socle, ${\rm Soc}(R_{R} )$, is projective. Nicholson and Watters have shown that if $R$ is a right $\rm PS$-ring, then so are the polynomial ring $R[x]$ and power series ring $R[[x]]$. In this paper, it is proved that, under suitable conditions, if $R$ has a (flat) projective socle, then so does the skew inverse power series ring $R[[x^{-1};\alpha , \delta ]]$ and the skew polynomial ring $R[x;\alpha , \delta ]$, where $R$ is an associative ring equipped with an automorphism $\alpha $ and an $\alpha $-derivation $\delta $. Our results extend and unify many existing results. Examples to illustrate and delimit the theory are provided.
A ring $R$ is called a right $\rm PS$-ring if its socle, ${\rm Soc}(R_{R} )$, is projective. Nicholson and Watters have shown that if $R$ is a right $\rm PS$-ring, then so are the polynomial ring $R[x]$ and power series ring $R[[x]]$. In this paper, it is proved that, under suitable conditions, if $R$ has a (flat) projective socle, then so does the skew inverse power series ring $R[[x^{-1};\alpha , \delta ]]$ and the skew polynomial ring $R[x;\alpha , \delta ]$, where $R$ is an associative ring equipped with an automorphism $\alpha $ and an $\alpha $-derivation $\delta $. Our results extend and unify many existing results. Examples to illustrate and delimit the theory are provided.
DOI : 10.21136/CMJ.2017.0672-15
Classification : 16P40, 16S36, 16W60, 16W70
Keywords: skew inverse power series ring; skew polynomial ring; annihilator; projective socle ring; flat socle ring
@article{10_21136_CMJ_2017_0672_15,
     author = {Paykan, Kamal},
     title = {Skew inverse power series rings over a ring with projective socle},
     journal = {Czechoslovak Mathematical Journal},
     pages = {389--395},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0672-15},
     mrnumber = {3661048},
     zbl = {06738526},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0672-15/}
}
TY  - JOUR
AU  - Paykan, Kamal
TI  - Skew inverse power series rings over a ring with projective socle
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 389
EP  - 395
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0672-15/
DO  - 10.21136/CMJ.2017.0672-15
LA  - en
ID  - 10_21136_CMJ_2017_0672_15
ER  - 
%0 Journal Article
%A Paykan, Kamal
%T Skew inverse power series rings over a ring with projective socle
%J Czechoslovak Mathematical Journal
%D 2017
%P 389-395
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0672-15/
%R 10.21136/CMJ.2017.0672-15
%G en
%F 10_21136_CMJ_2017_0672_15
Paykan, Kamal. Skew inverse power series rings over a ring with projective socle. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 389-395. doi: 10.21136/CMJ.2017.0672-15

[1] Armendariz, E. P.: A note on extensions of Baer and p.p.-rings. J. Aust. Math. Soc. 18 (1974), 470-473. | DOI | MR | JFM

[2] Goodearl, K. R.: Centralizers in differential, pseudo-differential, and fractional differential operator rings. Rocky Mt. J. Math. 13 (1983), 573-618. | DOI | MR | JFM

[3] Gordon, R.: Rings in which minimal left ideals are projective. Pac. J. Math. 31 (1969), 679-692. | DOI | MR | JFM

[4] Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings. Acta Math. Hung. 107 (2005), 207-224. | DOI | MR | JFM

[5] Kaplansky, I.: Rings of Operators. Mathematics Lecture Note Series, W. A. Benjamin, New York (1968). | MR | JFM

[6] Kim, C. O., Kim, H. K., Jang, S. H.: A study on quasi-duo rings. Bull. Korean Math. Soc. 36 (1999), 579-588. | MR | JFM

[7] Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3 (1996), 289-300. | MR | JFM

[8] Lam, T. Y., Dugas, A. S.: Quasi-duo rings and stable range descent. J. Pure Appl. Algebra 195 (2005), 243-259. | DOI | MR | JFM

[9] Leroy, A., Matczuk, J., Puczyłowski, E. R.: Quasi-duo skew polynomial rings. J. Pure Appl. Algebra 212 (2008), 1951-1959. | DOI | MR | JFM

[10] Letzter, E. S., Wang, L.: Noetherian skew inverse power series rings. Algebr. Represent. Theory 13 (2010), 303-314. | DOI | MR | JFM

[11] Liu, Z. K.: Rings with flat left socle. Commun. Algebra 23 (1995), 1645-1656. | DOI | MR | JFM

[12] Liu, Z., Li, F.: PS-rings of generalized power series. Commun. Algebra 26 (1998), 2283-2291. | DOI | MR | JFM

[13] Nicholson, W. K., Watters, J. F.: Rings with projective socle. Proc. Am. Math. Soc. 102 (1988), 443-450. | DOI | MR | JFM

[14] Paykan, K., Moussavi, A.: Special properties of differential inverse power series rings. J. Algebra Appl. 15 (2016), Article ID 1650181, 23 pages. | DOI | MR | JFM

[15] Paykan, K., Moussavi, A.: Study of skew inverse Laurent series rings. J. Algebra Appl. 16 (2017), Article ID 1750221, 33 pages. | DOI | MR

[16] Salem, R. M., Farahat, M. A., Abd-Elmalk, H.: PS-modules over Ore extensions and skew generalized power series rings. Int. J. Math. Math. Sci. (2015), Article ID 879129, 6 pages. | DOI | MR

[17] Tuganbaev, D. A.: Laurent series rings and pseudo-differential operator rings. J. Math. Sci., New York 128 (2005), 2843-2893. | DOI | MR | JFM

[18] Xiao, Y.: Rings with flat socles. Proc. Am. Math. Soc. 123 (1995), 2391-2395. | DOI | MR | JFM

[19] Xue, W.: Modules with projective socles. Riv. Mat. Univ. Parma, V. Ser. 1 (1992), 311-315. | MR | JFM

[20] Yu, H.-P.: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. | DOI | MR | JFM

Cité par Sources :