Keywords: skew inverse power series ring; skew polynomial ring; annihilator; projective socle ring; flat socle ring
@article{10_21136_CMJ_2017_0672_15,
author = {Paykan, Kamal},
title = {Skew inverse power series rings over a ring with projective socle},
journal = {Czechoslovak Mathematical Journal},
pages = {389--395},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0672-15},
mrnumber = {3661048},
zbl = {06738526},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0672-15/}
}
TY - JOUR AU - Paykan, Kamal TI - Skew inverse power series rings over a ring with projective socle JO - Czechoslovak Mathematical Journal PY - 2017 SP - 389 EP - 395 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0672-15/ DO - 10.21136/CMJ.2017.0672-15 LA - en ID - 10_21136_CMJ_2017_0672_15 ER -
%0 Journal Article %A Paykan, Kamal %T Skew inverse power series rings over a ring with projective socle %J Czechoslovak Mathematical Journal %D 2017 %P 389-395 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0672-15/ %R 10.21136/CMJ.2017.0672-15 %G en %F 10_21136_CMJ_2017_0672_15
Paykan, Kamal. Skew inverse power series rings over a ring with projective socle. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 389-395. doi: 10.21136/CMJ.2017.0672-15
[1] Armendariz, E. P.: A note on extensions of Baer and p.p.-rings. J. Aust. Math. Soc. 18 (1974), 470-473. | DOI | MR | JFM
[2] Goodearl, K. R.: Centralizers in differential, pseudo-differential, and fractional differential operator rings. Rocky Mt. J. Math. 13 (1983), 573-618. | DOI | MR | JFM
[3] Gordon, R.: Rings in which minimal left ideals are projective. Pac. J. Math. 31 (1969), 679-692. | DOI | MR | JFM
[4] Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings. Acta Math. Hung. 107 (2005), 207-224. | DOI | MR | JFM
[5] Kaplansky, I.: Rings of Operators. Mathematics Lecture Note Series, W. A. Benjamin, New York (1968). | MR | JFM
[6] Kim, C. O., Kim, H. K., Jang, S. H.: A study on quasi-duo rings. Bull. Korean Math. Soc. 36 (1999), 579-588. | MR | JFM
[7] Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3 (1996), 289-300. | MR | JFM
[8] Lam, T. Y., Dugas, A. S.: Quasi-duo rings and stable range descent. J. Pure Appl. Algebra 195 (2005), 243-259. | DOI | MR | JFM
[9] Leroy, A., Matczuk, J., Puczyłowski, E. R.: Quasi-duo skew polynomial rings. J. Pure Appl. Algebra 212 (2008), 1951-1959. | DOI | MR | JFM
[10] Letzter, E. S., Wang, L.: Noetherian skew inverse power series rings. Algebr. Represent. Theory 13 (2010), 303-314. | DOI | MR | JFM
[11] Liu, Z. K.: Rings with flat left socle. Commun. Algebra 23 (1995), 1645-1656. | DOI | MR | JFM
[12] Liu, Z., Li, F.: PS-rings of generalized power series. Commun. Algebra 26 (1998), 2283-2291. | DOI | MR | JFM
[13] Nicholson, W. K., Watters, J. F.: Rings with projective socle. Proc. Am. Math. Soc. 102 (1988), 443-450. | DOI | MR | JFM
[14] Paykan, K., Moussavi, A.: Special properties of differential inverse power series rings. J. Algebra Appl. 15 (2016), Article ID 1650181, 23 pages. | DOI | MR | JFM
[15] Paykan, K., Moussavi, A.: Study of skew inverse Laurent series rings. J. Algebra Appl. 16 (2017), Article ID 1750221, 33 pages. | DOI | MR
[16] Salem, R. M., Farahat, M. A., Abd-Elmalk, H.: PS-modules over Ore extensions and skew generalized power series rings. Int. J. Math. Math. Sci. (2015), Article ID 879129, 6 pages. | DOI | MR
[17] Tuganbaev, D. A.: Laurent series rings and pseudo-differential operator rings. J. Math. Sci., New York 128 (2005), 2843-2893. | DOI | MR | JFM
[18] Xiao, Y.: Rings with flat socles. Proc. Am. Math. Soc. 123 (1995), 2391-2395. | DOI | MR | JFM
[19] Xue, W.: Modules with projective socles. Riv. Mat. Univ. Parma, V. Ser. 1 (1992), 311-315. | MR | JFM
[20] Yu, H.-P.: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. | DOI | MR | JFM
Cité par Sources :