Automorphisms of metacyclic groups
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 803-815
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A metacyclic group $H$ can be presented as $\langle \alpha ,\beta \colon \alpha ^{n}=1$, $ \beta ^{m}=\alpha ^{t}$, $\beta \alpha \beta ^{-1}=\nobreak \alpha ^{r}\rangle $ for some $n$, $m$, $t$, $r$. Each endomorphism $\sigma $ of $H$ is determined by $\sigma (\alpha )=\alpha ^{x_{1}}\beta ^{y_{1}}$, $ \sigma (\beta )=\alpha ^{x_{2}}\beta ^{y_{2}}$ for some integers $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$. We give sufficient and necessary conditions on $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$ for $\sigma $ to be an automorphism.
A metacyclic group $H$ can be presented as $\langle \alpha ,\beta \colon \alpha ^{n}=1$, $ \beta ^{m}=\alpha ^{t}$, $\beta \alpha \beta ^{-1}=\nobreak \alpha ^{r}\rangle $ for some $n$, $m$, $t$, $r$. Each endomorphism $\sigma $ of $H$ is determined by $\sigma (\alpha )=\alpha ^{x_{1}}\beta ^{y_{1}}$, $ \sigma (\beta )=\alpha ^{x_{2}}\beta ^{y_{2}}$ for some integers $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$. We give sufficient and necessary conditions on $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$ for $\sigma $ to be an automorphism.
DOI : 10.21136/CMJ.2017.0656-16
Classification : 20D45
Keywords: automorphism; metacyclic group; linear congruence equation
@article{10_21136_CMJ_2017_0656_16,
     author = {Chen, Haimiao and Xiong, Yueshan and Zhu, Zhongjian},
     title = {Automorphisms of metacyclic groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {803--815},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2017.0656-16},
     mrnumber = {3851892},
     zbl = {06986973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0656-16/}
}
TY  - JOUR
AU  - Chen, Haimiao
AU  - Xiong, Yueshan
AU  - Zhu, Zhongjian
TI  - Automorphisms of metacyclic groups
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 803
EP  - 815
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0656-16/
DO  - 10.21136/CMJ.2017.0656-16
LA  - en
ID  - 10_21136_CMJ_2017_0656_16
ER  - 
%0 Journal Article
%A Chen, Haimiao
%A Xiong, Yueshan
%A Zhu, Zhongjian
%T Automorphisms of metacyclic groups
%J Czechoslovak Mathematical Journal
%D 2018
%P 803-815
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0656-16/
%R 10.21136/CMJ.2017.0656-16
%G en
%F 10_21136_CMJ_2017_0656_16
Chen, Haimiao; Xiong, Yueshan; Zhu, Zhongjian. Automorphisms of metacyclic groups. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 803-815. doi: 10.21136/CMJ.2017.0656-16

[1] Bidwell, J. N. S., Curran, M. J.: The automorphism group of a split metacyclic $p$-group. Arch. Math. 87 (2006), 488-497. | DOI | MR | JFM

[2] Chen, H.-M.: Reduction and regular t-balanced Cayley maps on split metacyclic 2-groups. Available at ArXiv:1702.08351 [math.CO] (2017), 14 pages.

[3] Curran, M. J.: The automorphism group of a split metacyclic 2-group. Arch. Math. 89 (2007), 10-23. | DOI | MR | JFM

[4] Curran, M. J.: The automorphism group of a nonsplit metacyclic $p$-group. Arch. Math. 90 (2008), 483-489. | DOI | MR | JFM

[5] Davitt, R. M.: The automorphism group of a finite metacyclic $p$-group. Proc. Am. Math. Soc. 25 (1970), 876-879. | DOI | MR | JFM

[6] Golasiński, M., Gonçalves, D. L.: On automorphisms of split metacyclic groups. Manuscripta Math. 128 (2009), 251-273. | DOI | MR | JFM

[7] Hempel, C. E.: Metacyclic groups. Commun. Algebra 28 (2000), 3865-3897. | DOI | MR | JFM

[8] Zassenhaus, H. J.: The Theory of Groups. Chelsea Publishing Company, New York (1958). | MR | JFM

Cité par Sources :