Automorphisms of metacyclic groups
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 803-815
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A metacyclic group $H$ can be presented as $\langle \alpha ,\beta \colon \alpha ^{n}=1$, $ \beta ^{m}=\alpha ^{t}$, $\beta \alpha \beta ^{-1}=\nobreak \alpha ^{r}\rangle $ for some $n$, $m$, $t$, $r$. Each endomorphism $\sigma $ of $H$ is determined by $\sigma (\alpha )=\alpha ^{x_{1}}\beta ^{y_{1}}$, $ \sigma (\beta )=\alpha ^{x_{2}}\beta ^{y_{2}}$ for some integers $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$. We give sufficient and necessary conditions on $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$ for $\sigma $ to be an automorphism.
A metacyclic group $H$ can be presented as $\langle \alpha ,\beta \colon \alpha ^{n}=1$, $ \beta ^{m}=\alpha ^{t}$, $\beta \alpha \beta ^{-1}=\nobreak \alpha ^{r}\rangle $ for some $n$, $m$, $t$, $r$. Each endomorphism $\sigma $ of $H$ is determined by $\sigma (\alpha )=\alpha ^{x_{1}}\beta ^{y_{1}}$, $ \sigma (\beta )=\alpha ^{x_{2}}\beta ^{y_{2}}$ for some integers $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$. We give sufficient and necessary conditions on $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$ for $\sigma $ to be an automorphism.
DOI :
10.21136/CMJ.2017.0656-16
Classification :
20D45
Keywords: automorphism; metacyclic group; linear congruence equation
Keywords: automorphism; metacyclic group; linear congruence equation
@article{10_21136_CMJ_2017_0656_16,
author = {Chen, Haimiao and Xiong, Yueshan and Zhu, Zhongjian},
title = {Automorphisms of metacyclic groups},
journal = {Czechoslovak Mathematical Journal},
pages = {803--815},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2017.0656-16},
mrnumber = {3851892},
zbl = {06986973},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0656-16/}
}
TY - JOUR AU - Chen, Haimiao AU - Xiong, Yueshan AU - Zhu, Zhongjian TI - Automorphisms of metacyclic groups JO - Czechoslovak Mathematical Journal PY - 2018 SP - 803 EP - 815 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0656-16/ DO - 10.21136/CMJ.2017.0656-16 LA - en ID - 10_21136_CMJ_2017_0656_16 ER -
%0 Journal Article %A Chen, Haimiao %A Xiong, Yueshan %A Zhu, Zhongjian %T Automorphisms of metacyclic groups %J Czechoslovak Mathematical Journal %D 2018 %P 803-815 %V 68 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0656-16/ %R 10.21136/CMJ.2017.0656-16 %G en %F 10_21136_CMJ_2017_0656_16
Chen, Haimiao; Xiong, Yueshan; Zhu, Zhongjian. Automorphisms of metacyclic groups. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 803-815. doi: 10.21136/CMJ.2017.0656-16
Cité par Sources :