Remarks on local Lie algebras of pairs of functions
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 687-709 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Starting by the famous paper by Kirillov, local Lie algebras of functions over smooth manifolds were studied very intensively by mathematicians and physicists. In the present paper we study local Lie algebras of pairs of functions which generate infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds.
Starting by the famous paper by Kirillov, local Lie algebras of functions over smooth manifolds were studied very intensively by mathematicians and physicists. In the present paper we study local Lie algebras of pairs of functions which generate infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds.
DOI : 10.21136/CMJ.2017.0626-16
Classification : 17B66, 53B99, 53C15
Keywords: almost-cosymplectic-contact structure; almost-coPoisson-Jacobi structure; infinitesimal symmetry; local Lie algebra
@article{10_21136_CMJ_2017_0626_16,
     author = {Jany\v{s}ka, Josef},
     title = {Remarks on local {Lie} algebras of pairs of functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {687--709},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2017.0626-16},
     mrnumber = {3851885},
     zbl = {06986966},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0626-16/}
}
TY  - JOUR
AU  - Janyška, Josef
TI  - Remarks on local Lie algebras of pairs of functions
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 687
EP  - 709
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0626-16/
DO  - 10.21136/CMJ.2017.0626-16
LA  - en
ID  - 10_21136_CMJ_2017_0626_16
ER  - 
%0 Journal Article
%A Janyška, Josef
%T Remarks on local Lie algebras of pairs of functions
%J Czechoslovak Mathematical Journal
%D 2018
%P 687-709
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0626-16/
%R 10.21136/CMJ.2017.0626-16
%G en
%F 10_21136_CMJ_2017_0626_16
Janyška, Josef. Remarks on local Lie algebras of pairs of functions. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 687-709. doi: 10.21136/CMJ.2017.0626-16

[1] León, M. de, Tuynman, G. M.: A universal model for cosymplectic manifolds. J. Geom. Phys. 20 (1996), 77-86. | DOI | MR | JFM

[2] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity. AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics (2012), 135-140. | DOI

[3] Janyška, J.: Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle. Arch. Math., Brno 50 (2014), 297-316. | DOI | MR | JFM

[4] Janyška, J.: Relations between constants of motion and conserved functions. Arch. Math., Brno 51 (2015), 297-313. | DOI | MR | JFM

[5] Janyška, J.: On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures. Arch. Math., Brno 52 (2016), 325-339. | DOI | MR | JFM

[6] Janyška, J., Modugno, M.: Graded Lie algebra of Hermitian tangent valued forms. J. Math. Pures Appl. (9) 85 (2006), 687-697. | DOI | MR | JFM

[7] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699-754. | DOI | MR | JFM

[8] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. (9) 91 (2009), 211-232. | DOI | MR | JFM

[9] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A, Math. Theor. 45 (2012), Article ID 485205, 28 pages. | DOI | MR | JFM

[10] Kirillov, A. A.: Local Lie algebras. Russ. Math. Surv. 31 (1976), 55-75. | DOI | MR | JFM

[11] Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl., IX. Sér. 57 (1978), 453-488 French. | MR | JFM

[12] Mackenzie, K. C. H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society, Lecture Note Series 213, Cambridge University Press, Cambridge (2005). | DOI | MR | JFM

[13] Olver, P. J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics 107, Springer, New York (1986). | DOI | MR | JFM

[14] Shiga, K.: Cohomology of Lie algebras over a manifold I. J. Math. Soc. Japan 26 (1974), 324-361. | DOI | MR | JFM

[15] Sommers, P.: On Killing tensors and constants of motion. J. Mathematical Phys. 14 (1973), 787-790. | DOI | MR

[16] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics 118, Birkhäuser, Basel (1994). | DOI | MR | JFM

Cité par Sources :