Keywords: almost-cosymplectic-contact structure; almost-coPoisson-Jacobi structure; infinitesimal symmetry; local Lie algebra
@article{10_21136_CMJ_2017_0626_16,
author = {Jany\v{s}ka, Josef},
title = {Remarks on local {Lie} algebras of pairs of functions},
journal = {Czechoslovak Mathematical Journal},
pages = {687--709},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2017.0626-16},
mrnumber = {3851885},
zbl = {06986966},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0626-16/}
}
TY - JOUR AU - Janyška, Josef TI - Remarks on local Lie algebras of pairs of functions JO - Czechoslovak Mathematical Journal PY - 2018 SP - 687 EP - 709 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0626-16/ DO - 10.21136/CMJ.2017.0626-16 LA - en ID - 10_21136_CMJ_2017_0626_16 ER -
Janyška, Josef. Remarks on local Lie algebras of pairs of functions. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 687-709. doi: 10.21136/CMJ.2017.0626-16
[1] León, M. de, Tuynman, G. M.: A universal model for cosymplectic manifolds. J. Geom. Phys. 20 (1996), 77-86. | DOI | MR | JFM
[2] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity. AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics (2012), 135-140. | DOI
[3] Janyška, J.: Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle. Arch. Math., Brno 50 (2014), 297-316. | DOI | MR | JFM
[4] Janyška, J.: Relations between constants of motion and conserved functions. Arch. Math., Brno 51 (2015), 297-313. | DOI | MR | JFM
[5] Janyška, J.: On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures. Arch. Math., Brno 52 (2016), 325-339. | DOI | MR | JFM
[6] Janyška, J., Modugno, M.: Graded Lie algebra of Hermitian tangent valued forms. J. Math. Pures Appl. (9) 85 (2006), 687-697. | DOI | MR | JFM
[7] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699-754. | DOI | MR | JFM
[8] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. (9) 91 (2009), 211-232. | DOI | MR | JFM
[9] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A, Math. Theor. 45 (2012), Article ID 485205, 28 pages. | DOI | MR | JFM
[10] Kirillov, A. A.: Local Lie algebras. Russ. Math. Surv. 31 (1976), 55-75. | DOI | MR | JFM
[11] Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl., IX. Sér. 57 (1978), 453-488 French. | MR | JFM
[12] Mackenzie, K. C. H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society, Lecture Note Series 213, Cambridge University Press, Cambridge (2005). | DOI | MR | JFM
[13] Olver, P. J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics 107, Springer, New York (1986). | DOI | MR | JFM
[14] Shiga, K.: Cohomology of Lie algebras over a manifold I. J. Math. Soc. Japan 26 (1974), 324-361. | DOI | MR | JFM
[15] Sommers, P.: On Killing tensors and constants of motion. J. Mathematical Phys. 14 (1973), 787-790. | DOI | MR
[16] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics 118, Birkhäuser, Basel (1994). | DOI | MR | JFM
Cité par Sources :