Geometric and combinatorial structure of a class of spherical folding tessellations – I
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 891-918 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A classification of dihedral folding tessellations of the sphere whose prototiles are a kite and an equilateral or isosceles triangle was obtained in recent four papers by Avelino and Santos (2012, 2013, 2014 and 2015). In this paper we extend this classification, presenting all dihedral folding tessellations of the sphere by kites and scalene triangles in which the shorter side of the kite is equal to the longest side of the triangle. Within two possible cases of adjacency, only one will be addressed. The combinatorial structure of each tiling is also analysed.
A classification of dihedral folding tessellations of the sphere whose prototiles are a kite and an equilateral or isosceles triangle was obtained in recent four papers by Avelino and Santos (2012, 2013, 2014 and 2015). In this paper we extend this classification, presenting all dihedral folding tessellations of the sphere by kites and scalene triangles in which the shorter side of the kite is equal to the longest side of the triangle. Within two possible cases of adjacency, only one will be addressed. The combinatorial structure of each tiling is also analysed.
DOI : 10.21136/CMJ.2017.0610-15
Classification : 20B35, 52B05, 52C20
Keywords: dihedral f-tiling; combinatorial propertie; spherical trigonometry; symmetry group
@article{10_21136_CMJ_2017_0610_15,
     author = {Avelino, Catarina P. and Santos, Altino F.},
     title = {Geometric and combinatorial structure of a class of spherical folding tessellations {\textendash} {I}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {891--918},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0610-15},
     mrnumber = {3736008},
     zbl = {06819562},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0610-15/}
}
TY  - JOUR
AU  - Avelino, Catarina P.
AU  - Santos, Altino F.
TI  - Geometric and combinatorial structure of a class of spherical folding tessellations – I
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 891
EP  - 918
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0610-15/
DO  - 10.21136/CMJ.2017.0610-15
LA  - en
ID  - 10_21136_CMJ_2017_0610_15
ER  - 
%0 Journal Article
%A Avelino, Catarina P.
%A Santos, Altino F.
%T Geometric and combinatorial structure of a class of spherical folding tessellations – I
%J Czechoslovak Mathematical Journal
%D 2017
%P 891-918
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0610-15/
%R 10.21136/CMJ.2017.0610-15
%G en
%F 10_21136_CMJ_2017_0610_15
Avelino, Catarina P.; Santos, Altino F. Geometric and combinatorial structure of a class of spherical folding tessellations – I. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 891-918. doi: 10.21136/CMJ.2017.0610-15

[1] Avelino, C. P., Santos, A. F.: Spherical and planar folding tessellations by kites and equilateral triangles. Australas. J. Comb. 53 (2012), 109-125. | MR | JFM

[2] Avelino, C. P., Santos, A. F.: Spherical folding tesselations by kites and isosceles triangles II. Int. J. Pure Appl. Math. 85 (2013), 45-67. | DOI | MR

[3] Avelino, C. P., Santos, A. F.: Spherical folding tessellations by kites and isosceles triangles: a case of adjacency. Math. Commun. 19 (2014), 1-28. | MR | JFM

[4] Avelino, C. P., Santos, A. F.: Spherical folding tessellations by kites and isosceles triangles IV. Ars Math. Contemp. 11 (2016), 59-78. | DOI | MR | JFM

[5] Breda, A. M.: A class of tilings of $S^{2}$. Geom. Dedicata 44 (1992), 241-253. | DOI | MR | JFM

[6] Breda, A. M., Dawson, R., Ribeiro, P. S.: Spherical $f$-tilings by two noncongruent classes of isosceles triangles-II. Acta Math. Sin., Engl. Ser. 30 (2014), 1435-1464. | DOI | MR | JFM

[7] Breda, A. M., Ribeiro, P. S.: Spherical $f$-tilings by two non congruent classes of isosceles triangles-I. Math. Commun. 17 (2012), 127-149. | MR | JFM

[8] Breda, A. M., Ribeiro, P. S., Santos, A. F.: A class of spherical dihedral $f$-tilings. Eur. J. Comb. 30 (2009), 119-132. | DOI | MR | JFM

[9] Breda, A. M., Santos, A. F.: Dihedral $f$-tilings of the sphere by rhombi and triangles. Discrete Math. Theor. Comput. Sci. (electronic only) 7 (2005), 123-141. | MR | JFM

[10] Dawson, R. J. M.: Tilings of the sphere with isosceles triangles. Discrete Comput. Geom. 30 (2003), 467-487. | DOI | MR | JFM

[11] Dawson, R. J. M., Doyle, B.: Tilings of the sphere with right triangles. I: The asymptotically right families. Electron. J. Comb. 13 (2006), Research paper R48, 31 pages. | MR | JFM

[12] Dawson, R. J. M., Doyle, B.: Tilings of the sphere with right triangles. II: The $(1,3,2)$, $(0,2,n)$ subfamily. Electron. J. Comb. 13 (2006), Research paper R49, 22 pages. | MR | JFM

[13] Robertson, S. A.: Isometric folding of Riemannian manifolds. Proc. R. Soc. Edinb., Sect. A 79 (1977), 275-284. | DOI | MR | JFM

[14] Ueno, Y., Agaoka, Y.: Classification of tilings of the 2-dimensional sphere by congruent triangles. Hiroshima Math. J. 32 (2002), 463-540. | DOI | MR | JFM

Cité par Sources :