A note on model structures on arbitrary Frobenius categories
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 329-337
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that there is a model structure in the sense of Quillen on an arbitrary Frobenius category $\mathcal {F}$ such that the homotopy category of this model structure is equivalent to the stable category $\underline {\mathcal {F}}$ as triangulated categories. This seems to be well-accepted by experts but we were unable to find a complete proof for it in the literature. When $\mathcal {F}$ is a weakly idempotent complete (i.e., every split monomorphism is an inflation) Frobenius category, the model structure we constructed is an exact (closed) model structure in the sense of Gillespie (2011).
We show that there is a model structure in the sense of Quillen on an arbitrary Frobenius category $\mathcal {F}$ such that the homotopy category of this model structure is equivalent to the stable category $\underline {\mathcal {F}}$ as triangulated categories. This seems to be well-accepted by experts but we were unable to find a complete proof for it in the literature. When $\mathcal {F}$ is a weakly idempotent complete (i.e., every split monomorphism is an inflation) Frobenius category, the model structure we constructed is an exact (closed) model structure in the sense of Gillespie (2011).
DOI : 10.21136/CMJ.2017.0582-15
Classification : 18E10, 18E30, 18E35
Keywords: Frobenius categorie; triangulated categories; model structure
@article{10_21136_CMJ_2017_0582_15,
     author = {Li, Zhi-wei},
     title = {A note on model structures on arbitrary {Frobenius} categories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {329--337},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0582-15},
     mrnumber = {3661044},
     zbl = {06738522},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0582-15/}
}
TY  - JOUR
AU  - Li, Zhi-wei
TI  - A note on model structures on arbitrary Frobenius categories
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 329
EP  - 337
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0582-15/
DO  - 10.21136/CMJ.2017.0582-15
LA  - en
ID  - 10_21136_CMJ_2017_0582_15
ER  - 
%0 Journal Article
%A Li, Zhi-wei
%T A note on model structures on arbitrary Frobenius categories
%J Czechoslovak Mathematical Journal
%D 2017
%P 329-337
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0582-15/
%R 10.21136/CMJ.2017.0582-15
%G en
%F 10_21136_CMJ_2017_0582_15
Li, Zhi-wei. A note on model structures on arbitrary Frobenius categories. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 329-337. doi: 10.21136/CMJ.2017.0582-15

[1] Becker, H.: Models for singularity categories. Adv. Math. 254 (2014), 187-232. | DOI | MR | JFM

[2] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 188 (2007), 207 pages. | DOI | MR | JFM

[3] Bühler, T.: Exact categories. Expo. Math. 28 (2010), 1-69. | DOI | MR | JFM

[4] Dwyer, W. G., Spalinski, J.: Homotopy theories and model categories. Handbook of Algebraic Topology North-Holland, Amsterdam (1995), 73-126. | DOI | MR | JFM

[5] Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer, New York (1967). | DOI | MR | JFM

[6] Gillespie, J.: Model structures on exact categories. J. Pure Appl. Algebra 215 (2011), 2892-2902. | DOI | MR | JFM

[7] Gillespie, J.: Exact model structures and recollements. J. Algebra 458 (2016), 265-306. | DOI | MR | JFM

[8] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1988). | DOI | MR | JFM

[9] Hirschhorn, P. S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs 99, American Mathematical Society, Providence (2003). | MR | JFM

[10] Hovey, M.: Model Categories. Mathematical Surveys and Monographs 63, American Mathematical Society, Providence (1999). | MR | JFM

[11] Hovey, M.: Cotorsion pairs, model category structures, and representation theory. Math. Z. 241 (2002), 553-592. | DOI | MR | JFM

[12] Keller, B.: Chain complexes and stable categories. Manuscr. Math. 67 (1990), 379-417. | DOI | MR | JFM

[13] Lane, S. Mac: Categories for the Working Mathematician. Graduate Texts in Mathematics 5, Springer, New York (1998). | MR | JFM

[14] Quillen, D. G.: Homotopical Algebra. Lecture Notes in Mathematics 43, Springer, Berlin (1967). | DOI | MR | JFM

[15] Quillen, D.: Higher algebraic $K$-theory. I. Algebraic $K$-Theory I. Proc. Conf. Battelle Inst. 1972, Lecture Notes in Mathematics 341, Springer, Berlin (1973), 85-147. | DOI | MR | JFM

Cité par Sources :