Keywords: hom-Lie algebras; cohomology of hom-Lie algebras; extensions of hom-Lie algebras
@article{10_21136_CMJ_2017_0576_15,
author = {Armakan, Abdoreza R. and Farhangdoost, Mohammed Reza},
title = {Extensions of {hom-Lie} algebras in terms of cohomology},
journal = {Czechoslovak Mathematical Journal},
pages = {317--328},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0576-15},
mrnumber = {3661043},
zbl = {06738521},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0576-15/}
}
TY - JOUR AU - Armakan, Abdoreza R. AU - Farhangdoost, Mohammed Reza TI - Extensions of hom-Lie algebras in terms of cohomology JO - Czechoslovak Mathematical Journal PY - 2017 SP - 317 EP - 328 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0576-15/ DO - 10.21136/CMJ.2017.0576-15 LA - en ID - 10_21136_CMJ_2017_0576_15 ER -
%0 Journal Article %A Armakan, Abdoreza R. %A Farhangdoost, Mohammed Reza %T Extensions of hom-Lie algebras in terms of cohomology %J Czechoslovak Mathematical Journal %D 2017 %P 317-328 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0576-15/ %R 10.21136/CMJ.2017.0576-15 %G en %F 10_21136_CMJ_2017_0576_15
Armakan, Abdoreza R.; Farhangdoost, Mohammed Reza. Extensions of hom-Lie algebras in terms of cohomology. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 317-328. doi: 10.21136/CMJ.2017.0576-15
[1] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras. J. Lie Theory 21 (2011), 813-836. | MR | JFM
[2] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13, Springer, New York (1992). | DOI | MR | JFM
[3] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76 (2014), 38-60. | DOI | MR | JFM
[4] Casas, J. M., Insua, M. A., Pacheco, N.: On universal central extensions of Hom-Lie algebras. Hacet. J. Math. Stat. 44 (2015), 277-288. | MR | JFM
[5] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations. J. Algebra 295 (2006), 314-361. | DOI | MR | JFM
[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (corrected electronic version) (1993). | DOI | MR | JFM
[7] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64. | DOI | MR | JFM
[8] Makhlouf, A., Silvestrov, S.: Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22 (2010), 715-739. | DOI | MR | JFM
[9] Sheng, Y.: Representations of hom-Lie algebras. Algebr. Represent. Theory 15 (2012), 1081-1098. | DOI | MR | JFM
[10] Sheng, Y., Chen, D.: Hom-Lie 2-algebras. J. Algebra 376 (2013), 174-195. | DOI | MR | JFM
[11] Sheng, Y., Xiong, Z.: On Hom-Lie algebras. Linear Multilinear Algebra 63 (2015), 2379-2395. | DOI | MR | JFM
[12] Yau, D.: Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 95-108. | DOI | MR | JFM
[13] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. | DOI | MR | JFM
Cité par Sources :