Extensions of hom-Lie algebras in terms of cohomology
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 317-328 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study (non-abelian) extensions of a given hom-Lie algebra and provide a geometrical interpretation of extensions, in particular, we characterize an extension of a hom-Lie algebra $\frak {g}$ by another hom-Lie algebra $\frak {h}$ and discuss the case where $\frak {h}$ has no center. We also deal with the setting of covariant exterior derivatives, Chevalley derivative, Maurer-Cartan formula, curvature and the Bianchi identity for the possible extensions in differential geometry. Moreover, we find a cohomological obstruction to the existence of extensions of hom-Lie algebras, i.e., we show that in order to have an extendible hom-Lie algebra, there should exist a trivial member of the third cohomology.
We study (non-abelian) extensions of a given hom-Lie algebra and provide a geometrical interpretation of extensions, in particular, we characterize an extension of a hom-Lie algebra $\frak {g}$ by another hom-Lie algebra $\frak {h}$ and discuss the case where $\frak {h}$ has no center. We also deal with the setting of covariant exterior derivatives, Chevalley derivative, Maurer-Cartan formula, curvature and the Bianchi identity for the possible extensions in differential geometry. Moreover, we find a cohomological obstruction to the existence of extensions of hom-Lie algebras, i.e., we show that in order to have an extendible hom-Lie algebra, there should exist a trivial member of the third cohomology.
DOI : 10.21136/CMJ.2017.0576-15
Classification : 17B99, 55U15
Keywords: hom-Lie algebras; cohomology of hom-Lie algebras; extensions of hom-Lie algebras
@article{10_21136_CMJ_2017_0576_15,
     author = {Armakan, Abdoreza R. and Farhangdoost, Mohammed Reza},
     title = {Extensions of {hom-Lie} algebras in terms of cohomology},
     journal = {Czechoslovak Mathematical Journal},
     pages = {317--328},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0576-15},
     mrnumber = {3661043},
     zbl = {06738521},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0576-15/}
}
TY  - JOUR
AU  - Armakan, Abdoreza R.
AU  - Farhangdoost, Mohammed Reza
TI  - Extensions of hom-Lie algebras in terms of cohomology
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 317
EP  - 328
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0576-15/
DO  - 10.21136/CMJ.2017.0576-15
LA  - en
ID  - 10_21136_CMJ_2017_0576_15
ER  - 
%0 Journal Article
%A Armakan, Abdoreza R.
%A Farhangdoost, Mohammed Reza
%T Extensions of hom-Lie algebras in terms of cohomology
%J Czechoslovak Mathematical Journal
%D 2017
%P 317-328
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0576-15/
%R 10.21136/CMJ.2017.0576-15
%G en
%F 10_21136_CMJ_2017_0576_15
Armakan, Abdoreza R.; Farhangdoost, Mohammed Reza. Extensions of hom-Lie algebras in terms of cohomology. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 317-328. doi: 10.21136/CMJ.2017.0576-15

[1] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras. J. Lie Theory 21 (2011), 813-836. | MR | JFM

[2] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13, Springer, New York (1992). | DOI | MR | JFM

[3] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76 (2014), 38-60. | DOI | MR | JFM

[4] Casas, J. M., Insua, M. A., Pacheco, N.: On universal central extensions of Hom-Lie algebras. Hacet. J. Math. Stat. 44 (2015), 277-288. | MR | JFM

[5] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations. J. Algebra 295 (2006), 314-361. | DOI | MR | JFM

[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (corrected electronic version) (1993). | DOI | MR | JFM

[7] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64. | DOI | MR | JFM

[8] Makhlouf, A., Silvestrov, S.: Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22 (2010), 715-739. | DOI | MR | JFM

[9] Sheng, Y.: Representations of hom-Lie algebras. Algebr. Represent. Theory 15 (2012), 1081-1098. | DOI | MR | JFM

[10] Sheng, Y., Chen, D.: Hom-Lie 2-algebras. J. Algebra 376 (2013), 174-195. | DOI | MR | JFM

[11] Sheng, Y., Xiong, Z.: On Hom-Lie algebras. Linear Multilinear Algebra 63 (2015), 2379-2395. | DOI | MR | JFM

[12] Yau, D.: Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 95-108. | DOI | MR | JFM

[13] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. | DOI | MR | JFM

Cité par Sources :