A note on Poisson derivations
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 657-660 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Free Poisson algebras are very closely connected with polynomial algebras, and the Poisson brackets are used to solve many problems in affine algebraic geometry. In this note, we study Poisson derivations on the symplectic Poisson algebra, and give a connection between the Jacobian conjecture with derivations on the symplectic Poisson algebra.
Free Poisson algebras are very closely connected with polynomial algebras, and the Poisson brackets are used to solve many problems in affine algebraic geometry. In this note, we study Poisson derivations on the symplectic Poisson algebra, and give a connection between the Jacobian conjecture with derivations on the symplectic Poisson algebra.
DOI : 10.21136/CMJ.2017.0574-16
Classification : 13N15, 17B63
Keywords: Poisson algebra; derivation; Jacobian conjecture
@article{10_21136_CMJ_2017_0574_16,
     author = {Li, Jiantao},
     title = {A note on {Poisson} derivations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {657--660},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2017.0574-16},
     mrnumber = {3851882},
     zbl = {06986963},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0574-16/}
}
TY  - JOUR
AU  - Li, Jiantao
TI  - A note on Poisson derivations
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 657
EP  - 660
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0574-16/
DO  - 10.21136/CMJ.2017.0574-16
LA  - en
ID  - 10_21136_CMJ_2017_0574_16
ER  - 
%0 Journal Article
%A Li, Jiantao
%T A note on Poisson derivations
%J Czechoslovak Mathematical Journal
%D 2018
%P 657-660
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0574-16/
%R 10.21136/CMJ.2017.0574-16
%G en
%F 10_21136_CMJ_2017_0574_16
Li, Jiantao. A note on Poisson derivations. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 657-660. doi: 10.21136/CMJ.2017.0574-16

[1] Makar-Limanov, L., Shestakov, I.: Polynomial and Poisson dependence in free Poisson algebras and free Poisson fields. J. Algebra 349 (2012), 372-379. | DOI | MR | JFM

[2] Makar-Limanov, L., Turusbekova, U., Umirbaev, U.: Automorphisms and derivations of free Poisson algebras in two variables. J. Algebra 322 (2009), 3318-3330. | DOI | MR | JFM

[3] Makar-Limanov, L., Umirbaev, U.: Centralizers in free Poisson algebras. Proc. Amer. Math. Soc. 135 (2007), 1969-1975. | DOI | MR | JFM

[4] Makar-Limanov, L., Umirbaev, U.: The Freiheitssatz for Poisson algebras. J. Algebra 328 (2011), 495-503. | DOI | MR | JFM

[5] Nowicki, A.: Polynomial Derivations and Their Rings of Constants. Uniwersytet Mikołaja Kopernika, Toruń (1994). | MR | JFM

[6] Shestakov, I. P., Umirbaev, U. U.: Poisson brackets and two-generated subalgebras of rings of polynomials. J. Am. Math. Soc. 17 (2004), 181-196. | DOI | MR | JFM

[7] Shestakov, I. P., Umirbaev, U. U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17 (2004), 197-227. | DOI | MR | JFM

[8] Umirbaev, U.: Universal enveloping algebras and universal derivations of Poisson algebras. J. Algebra 354 (2012), 77-94. | DOI | MR | JFM

[9] Essen, A. van den: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics 190, Birkhäuser, Basel (2000). | DOI | MR | JFM

Cité par Sources :