The general rigidity result for bundles of $A$-covelocities and $A$-jets
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 297-316
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M$ be an $m$-dimensional manifold and $A=\mathbb D^r_k /I=\mathbb R \oplus N_A$ a Weil algebra of height $r$. We prove that any $A$-covelocity $T^A_x f \in T^{A*}_x M$, $x \in M$ is determined by its values over arbitrary $\max \{\mathop {\rm width}A, m \}$ regular and under the first jet projection linearly independent elements of $T^A_xM$. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result $T^{A*}M \simeq T^{r*}M$ without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from $m \ge k$ to all cases of $m$. \endgraf We also introduce the space $J^A(M,N)$ of $A$-jets and prove its rigidity in the sense of its coincidence with the classical jet space $J^r(M,N)$.
Let $M$ be an $m$-dimensional manifold and $A=\mathbb D^r_k /I=\mathbb R \oplus N_A$ a Weil algebra of height $r$. We prove that any $A$-covelocity $T^A_x f \in T^{A*}_x M$, $x \in M$ is determined by its values over arbitrary $\max \{\mathop {\rm width}A, m \}$ regular and under the first jet projection linearly independent elements of $T^A_xM$. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result $T^{A*}M \simeq T^{r*}M$ without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from $m \ge k$ to all cases of $m$. \endgraf We also introduce the space $J^A(M,N)$ of $A$-jets and prove its rigidity in the sense of its coincidence with the classical jet space $J^r(M,N)$.
DOI : 10.21136/CMJ.2017.0566-15
Classification : 53C24, 58A20, 58A32
Keywords: $r$-jet; bundle functor; Weil functor; Lie group; jet group; $B$-admissible $A$-velocity
@article{10_21136_CMJ_2017_0566_15,
     author = {Tom\'a\v{s}, Ji\v{r}{\'\i}},
     title = {The general rigidity result for bundles of $A$-covelocities and $A$-jets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {297--316},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0566-15},
     mrnumber = {3661042},
     zbl = {06738520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0566-15/}
}
TY  - JOUR
AU  - Tomáš, Jiří
TI  - The general rigidity result for bundles of $A$-covelocities and $A$-jets
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 297
EP  - 316
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0566-15/
DO  - 10.21136/CMJ.2017.0566-15
LA  - en
ID  - 10_21136_CMJ_2017_0566_15
ER  - 
%0 Journal Article
%A Tomáš, Jiří
%T The general rigidity result for bundles of $A$-covelocities and $A$-jets
%J Czechoslovak Mathematical Journal
%D 2017
%P 297-316
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0566-15/
%R 10.21136/CMJ.2017.0566-15
%G en
%F 10_21136_CMJ_2017_0566_15
Tomáš, Jiří. The general rigidity result for bundles of $A$-covelocities and $A$-jets. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 297-316. doi: 10.21136/CMJ.2017.0566-15

[1] Alonso, R. J.: Jet manifolds associated to a Weil bundle. Arch. Math., Brno 36 (2000), 195-209. | MR | JFM

[2] Alonso-Blanco, R. J., Blázquez-Sanz, D.: The only global contact transformations of order two or more are point transformations. J. Lie Theory 15 (2005), 135-143. | MR | JFM

[3] Bertram, W.: Differential geometry, Lie groups and symmetric spaces over general base fields and rings. Mem. Am. Math. Soc. 192 (2008), 202 pages. | DOI | MR | JFM

[4] Bushueva, G. N., Shurygin, V. V.: On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds. Lobachevskii J. Math. (electronic only) 18 (2005), 53-105. | MR | JFM

[5] Eck, D. J.: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133-140. | DOI | MR | JFM

[6] Kainz, G., Michor, P. W.: Natural transformations in differential geometry. Czech. Math. J. 37 (1987), 584-607. | MR | JFM

[7] Kolář, I.: Covariant approach to natural transformations of Weil functors. Commentat. Math. Univ. Carol. 27 (1986), 723-729. | DOI | MR | JFM

[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993). | DOI | MR | JFM

[9] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors. Differ. Geom. Appl. 11 (1999), 105-115. | DOI | MR | JFM

[10] Kureš, M.: Weil algebras associated to functors of third order semiholonomic velocities. Math. J. Okayama Univ. 56 (2014), 117-127. | MR | JFM

[11] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points. Nagoya Math. J. 109 (1988), 63-89. | DOI | MR | JFM

[12] Mikulski, W. M.: Product preserving bundle functors on fibered manifolds. Arch. Math., Brno 32 (1996), 307-316. | MR | JFM

[13] Muñoz, J., Rodriguez, J., Muriel, F. J.: Weil bundles and jet spaces. Czech. Math. J. 50 (2000), 721-748. | DOI | MR | JFM

[14] Nishimura, H.: Axiomatic differential geometry I--1---towards model categories of differential geometry. Math. Appl., Brno 1 (2012), 171-182. | DOI | MR | JFM

[15] Shurygin, V. V.: The structure of smooth mappings over Weil algebras and the category of manifolds over algebras. Lobachevskii J. Math. 5 (1999), 29-55. | MR | JFM

[16] Shurygin, V. V.: Some aspects of the theory of manifolds over algebras and Weil bundles. J. Math. Sci., New York 169 (2010), 315-341 translation from \global\questionmarktrue Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 123 2009 211-255. | DOI | MR | JFM

[17] Tomáš, J. M.: On bundles of covelocities. Lobachevskii J. Math. 30 (2009), 280-288. | DOI | MR | JFM

[18] Tomáš, J.: Some results on bundles of covelocities. J. Appl. Math., Aplimat V 4 (2011), 297-306. | MR

[19] Tomáš, J.: Bundles of $(p, A)$-covelocities and $(p, A)$-jets. Miskolc Math. Notes 14 (2013), 547-555. | DOI | MR | JFM

[20] Weil, A.: Théorie des points proches sur les variétés des différentiables. Colloques internat. Centre nat. Rech. Sci. 52 (1953), French 111-117. | MR | JFM

Cité par Sources :