Keywords: $r$-jet; bundle functor; Weil functor; Lie group; jet group; $B$-admissible $A$-velocity
@article{10_21136_CMJ_2017_0566_15,
author = {Tom\'a\v{s}, Ji\v{r}{\'\i}},
title = {The general rigidity result for bundles of $A$-covelocities and $A$-jets},
journal = {Czechoslovak Mathematical Journal},
pages = {297--316},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0566-15},
mrnumber = {3661042},
zbl = {06738520},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0566-15/}
}
TY - JOUR AU - Tomáš, Jiří TI - The general rigidity result for bundles of $A$-covelocities and $A$-jets JO - Czechoslovak Mathematical Journal PY - 2017 SP - 297 EP - 316 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0566-15/ DO - 10.21136/CMJ.2017.0566-15 LA - en ID - 10_21136_CMJ_2017_0566_15 ER -
%0 Journal Article %A Tomáš, Jiří %T The general rigidity result for bundles of $A$-covelocities and $A$-jets %J Czechoslovak Mathematical Journal %D 2017 %P 297-316 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0566-15/ %R 10.21136/CMJ.2017.0566-15 %G en %F 10_21136_CMJ_2017_0566_15
Tomáš, Jiří. The general rigidity result for bundles of $A$-covelocities and $A$-jets. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 297-316. doi: 10.21136/CMJ.2017.0566-15
[1] Alonso, R. J.: Jet manifolds associated to a Weil bundle. Arch. Math., Brno 36 (2000), 195-209. | MR | JFM
[2] Alonso-Blanco, R. J., Blázquez-Sanz, D.: The only global contact transformations of order two or more are point transformations. J. Lie Theory 15 (2005), 135-143. | MR | JFM
[3] Bertram, W.: Differential geometry, Lie groups and symmetric spaces over general base fields and rings. Mem. Am. Math. Soc. 192 (2008), 202 pages. | DOI | MR | JFM
[4] Bushueva, G. N., Shurygin, V. V.: On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds. Lobachevskii J. Math. (electronic only) 18 (2005), 53-105. | MR | JFM
[5] Eck, D. J.: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133-140. | DOI | MR | JFM
[6] Kainz, G., Michor, P. W.: Natural transformations in differential geometry. Czech. Math. J. 37 (1987), 584-607. | MR | JFM
[7] Kolář, I.: Covariant approach to natural transformations of Weil functors. Commentat. Math. Univ. Carol. 27 (1986), 723-729. | DOI | MR | JFM
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993). | DOI | MR | JFM
[9] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors. Differ. Geom. Appl. 11 (1999), 105-115. | DOI | MR | JFM
[10] Kureš, M.: Weil algebras associated to functors of third order semiholonomic velocities. Math. J. Okayama Univ. 56 (2014), 117-127. | MR | JFM
[11] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points. Nagoya Math. J. 109 (1988), 63-89. | DOI | MR | JFM
[12] Mikulski, W. M.: Product preserving bundle functors on fibered manifolds. Arch. Math., Brno 32 (1996), 307-316. | MR | JFM
[13] Muñoz, J., Rodriguez, J., Muriel, F. J.: Weil bundles and jet spaces. Czech. Math. J. 50 (2000), 721-748. | DOI | MR | JFM
[14] Nishimura, H.: Axiomatic differential geometry I--1---towards model categories of differential geometry. Math. Appl., Brno 1 (2012), 171-182. | DOI | MR | JFM
[15] Shurygin, V. V.: The structure of smooth mappings over Weil algebras and the category of manifolds over algebras. Lobachevskii J. Math. 5 (1999), 29-55. | MR | JFM
[16] Shurygin, V. V.: Some aspects of the theory of manifolds over algebras and Weil bundles. J. Math. Sci., New York 169 (2010), 315-341 translation from \global\questionmarktrue Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 123 2009 211-255. | DOI | MR | JFM
[17] Tomáš, J. M.: On bundles of covelocities. Lobachevskii J. Math. 30 (2009), 280-288. | DOI | MR | JFM
[18] Tomáš, J.: Some results on bundles of covelocities. J. Appl. Math., Aplimat V 4 (2011), 297-306. | MR
[19] Tomáš, J.: Bundles of $(p, A)$-covelocities and $(p, A)$-jets. Miskolc Math. Notes 14 (2013), 547-555. | DOI | MR | JFM
[20] Weil, A.: Théorie des points proches sur les variétés des différentiables. Colloques internat. Centre nat. Rech. Sci. 52 (1953), French 111-117. | MR | JFM
Cité par Sources :