Keywords: sum of tails; $q$-series; partition; $L$-function
@article{10_21136_CMJ_2017_0550_15,
author = {Patkowski, Alexander E.},
title = {On the $q${-Pell} sequences and sums of tails},
journal = {Czechoslovak Mathematical Journal},
pages = {279--288},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0550-15},
mrnumber = {3633012},
zbl = {06738518},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0550-15/}
}
TY - JOUR AU - Patkowski, Alexander E. TI - On the $q$-Pell sequences and sums of tails JO - Czechoslovak Mathematical Journal PY - 2017 SP - 279 EP - 288 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0550-15/ DO - 10.21136/CMJ.2017.0550-15 LA - en ID - 10_21136_CMJ_2017_0550_15 ER -
Patkowski, Alexander E. On the $q$-Pell sequences and sums of tails. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 279-288. doi: 10.21136/CMJ.2017.0550-15
[1] Andrews, G. E.: $q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. CBMS, Reg. Conf. Ser. Math. 66, American Mathematical Society, Providence (1986). | DOI | MR | JFM
[2] Andrews, G. E.: Mock theta functions. Theta functions L. Ehrenpreis, R. Gunning Bowdoin 1987, Proc. Symp. Pure Math., 49, Part 2, American Mathematical Society, Providence (1989), 283-298. | DOI | MR | JFM
[3] Andrews, G. E.: Partitions with distinct evens. Advances in Combinatorial Mathematics. Proc. 2nd Waterloo Workshop in Computer Algebra, 2008 I. S. Kotsireas et al Springer, Berlin (2009), 31-37. | DOI | MR | JFM
[4] Andrews, G. E., Berndt, B. C.: Ramanujan's Lost Notebook. Part II. Springer, New York (2009). | DOI | MR | JFM
[5] Andrews, G. E., Dyson, F. J., Hickerson, D.: Partitions and indefinite quadratic forms. Invent. Math. 91 (1988), 391-407. | DOI | MR | JFM
[6] Andrews, G. E., Jimenez-Urroz, J., Ono, K.: $q$-series identities and values of certain $L$-functions. Duke Math. J. 108 (2001), 395-419. | DOI | MR | JFM
[7] Bringmann, K., Kane, B.: New identities involving sums of the tails related to real quadratic fields. Ramanujan J. 23 (2010), 243-251. | DOI | MR | JFM
[8] Bringmann, K., Kane, B.: Multiplicative $q$-hypergeometric series arising from real quadratic fields. Trans. Am. Math. Soc. 363 (2011), 2191-2209. | DOI | MR | JFM
[9] Chen, W. Y. C., Ji, K. Q.: Weighted forms of Euler's theorem. J. Comb. Theory, Ser. A 114 (2007), 360-372. | DOI | MR | JFM
[10] Cohen, H.: $q$-identities for Maass waveforms. Invent. Math. 91 (1988), 409-422. | DOI | MR | JFM
[11] Corson, D., Favero, D., Liesinger, K., Zubairy, S.: Characters and $q$-series in $\mathbb{Q}(\sqrt{2})$. J. Number Theory 107 (2004), 392-405. | DOI | MR | JFM
[12] Fine, N. J.: Basic Hypergeometric Series and Applications. With a Foreword by George E. Andrews. Mathematical Surveys and Monographs 27, American Mathematical Society, Providence (1988). | DOI | MR | JFM
[13] Lebesgue, V. A.: Sommation de quelques series. J. Math. Pure. Appl. 5 (1840), 42-71.
[14] Li, Y., Ngo, H. T., Rhoades, R. C.: Renormalization and quantum modular forms, part II: Mock theta functions. Available at arXiv:1311.3044 [math.NT].
[15] Lovejoy, J.: Overpartitions and real quadratic fields. J. Number Theory 106 (2004), 178-186. | DOI | MR | JFM
[16] Lovejoy, J.: Overpartition pairs. Ann. Inst. Fourier (Grenoble) 56 (2006), 781-794. | DOI | MR | JFM
[17] Patkowski, A. E.: A note on the rank parity function. Discrete Math. 310 (2010), 961-965. | DOI | MR | JFM
[18] Patkowski, A. E.: An observation on the extension of Abel's lemma. Integers 10 (2010), 793-800. | DOI | MR | JFM
[19] Patkowski, A. E.: More generating functions for values of certain $L$-functions. J. Comb. Number Theory 2 (2010), 160-170. | MR | JFM
[20] Patkowski, A. E.: On curious generating functions for values of $L$-functions. Int. J. Number Theory 6 1531-1540 (2010). | DOI | MR | JFM
[21] Santos, J. P. O., Sills, A. V.: $q$-Pell sequences and two identities of V. A. Lebesgue. Discrete Math. 257 (2002), 125-142. | DOI | MR | JFM
Cité par Sources :