Stratified modules over an extension algebra
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 523-551.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A$ be a standard Koszul standardly stratified algebra and $X$ an $A$-module. The paper investigates conditions which imply that the module ${\rm Ext}_A^*(X)$ over the Yoneda extension algebra $A^*$ is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of $A$ is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.
DOI : 10.21136/CMJ.2017.0546-16
Classification : 16E05, 16E30, 16S37
Keywords: standardly stratified algebra; homological dual; standard Koszul algebra
@article{10_21136_CMJ_2017_0546_16,
     author = {Luk\'acs, Erzs\'ebet and Magyar, Andr\'as},
     title = {Stratified modules over an extension algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {523--551},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.21136/CMJ.2017.0546-16},
     mrnumber = {3819189},
     zbl = {06890388},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-16/}
}
TY  - JOUR
AU  - Lukács, Erzsébet
AU  - Magyar, András
TI  - Stratified modules over an extension algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 523
EP  - 551
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-16/
DO  - 10.21136/CMJ.2017.0546-16
LA  - en
ID  - 10_21136_CMJ_2017_0546_16
ER  - 
%0 Journal Article
%A Lukács, Erzsébet
%A Magyar, András
%T Stratified modules over an extension algebra
%J Czechoslovak Mathematical Journal
%D 2018
%P 523-551
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-16/
%R 10.21136/CMJ.2017.0546-16
%G en
%F 10_21136_CMJ_2017_0546_16
Lukács, Erzsébet; Magyar, András. Stratified modules over an extension algebra. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 523-551. doi : 10.21136/CMJ.2017.0546-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-16/

Cité par Sources :