Stratified modules over an extension algebra
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 523-551 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a standard Koszul standardly stratified algebra and $X$ an $A$-module. The paper investigates conditions which imply that the module ${\rm Ext}_A^*(X)$ over the Yoneda extension algebra $A^*$ is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of $A$ is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.
Let $A$ be a standard Koszul standardly stratified algebra and $X$ an $A$-module. The paper investigates conditions which imply that the module ${\rm Ext}_A^*(X)$ over the Yoneda extension algebra $A^*$ is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of $A$ is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.
DOI : 10.21136/CMJ.2017.0546-16
Classification : 16E05, 16E30, 16S37
Keywords: standardly stratified algebra; homological dual; standard Koszul algebra
@article{10_21136_CMJ_2017_0546_16,
     author = {Luk\'acs, Erzs\'ebet and Magyar, Andr\'as},
     title = {Stratified modules over an extension algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {523--551},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2017.0546-16},
     mrnumber = {3819189},
     zbl = {06890388},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-16/}
}
TY  - JOUR
AU  - Lukács, Erzsébet
AU  - Magyar, András
TI  - Stratified modules over an extension algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 523
EP  - 551
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-16/
DO  - 10.21136/CMJ.2017.0546-16
LA  - en
ID  - 10_21136_CMJ_2017_0546_16
ER  - 
%0 Journal Article
%A Lukács, Erzsébet
%A Magyar, András
%T Stratified modules over an extension algebra
%J Czechoslovak Mathematical Journal
%D 2018
%P 523-551
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-16/
%R 10.21136/CMJ.2017.0546-16
%G en
%F 10_21136_CMJ_2017_0546_16
Lukács, Erzsébet; Magyar, András. Stratified modules over an extension algebra. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 523-551. doi: 10.21136/CMJ.2017.0546-16

[1] Ágoston, I., Dlab, V., Lukács, E.: Lean quasi-hereditary algebras. Representations of Algebras V. Dlab et al. Proc. of the Sixth International Conf. on Representations of Algebras, Ottawa, 1992, American Mathematical Society, CMS Conf. Proc. 14 (1993), 1-14. | MR | JFM

[2] Ágoston, I., Dlab, V., Lukács, E.: Homological duality and quasi-heredity. Can. J. Math. 48 (1996), 897-917. | DOI | MR | JFM

[3] Ágoston, I., Dlab, V., Lukács, E.: Stratified algebras. C. R. Math. Acad. Sci., Soc. R. Can. 20 (1998), 22-28. | MR | JFM

[4] Ágoston, I., Dlab, V., Lukács, E.: Quasi-hereditary extension algebras. Algebr. Represent. Theory 6 (2003), 97-117. | DOI | MR | JFM

[5] Ágoston, I., Dlab, V., Lukács, E.: Standardly stratified extension algebras. Commun. Algebra 33 (2005), 1357-1368. | DOI | MR | JFM

[6] Ágoston, I., Happel, D., Lukács, E., Unger, L.: Finitistic dimension of standardly stratified algebras. Commun. Algebra 28 (2000), 2745-2752. | DOI | MR | JFM

[7] Cline, E., Parshall, B., Scott, L.: Stratifying Endomorphism Algebras. Mem. Am. Math. Soc. 591 (1996). | DOI | MR | JFM

[8] Dlab, V.: Quasi-hereditary algebras revisited. An. Ştiinţ. Univ. Ovidius Constanţa, Ser. Mat. 4 (1996), 43-54. | MR | JFM

[9] Green, E. L., Martínez-Villa, R.: Koszul and Yoneda algebras. Representation Theory of Algebras R. Bautista Seventh international Conf., Mexico, 1994, American Mathematical Society. CMS Conf. Proc. 18 (1996), 247-297. | MR | JFM

[10] Lukács, E., Magyar, A.: Standard Koszul standardly stratified algebras. Commun. Algebra 45 (2017), 1270-1277. | DOI | MR | JFM

Cité par Sources :