Keywords: ruled real hypersurface; nonflat complex space form; real hypersurfaces of type $({\rm A}_2)$ in a complex projective space; geodesics; structure torsion; Hopf manifold
@article{10_21136_CMJ_2017_0546_15,
author = {Kim, Byung Hak and Kim, In-Bae and Maeda, Sadahiro},
title = {A characterization of a certain real hypersurface of type $({\rm A}_2)$ in a complex projective space},
journal = {Czechoslovak Mathematical Journal},
pages = {271--278},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0546-15},
mrnumber = {3633011},
zbl = {06738517},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-15/}
}
TY - JOUR
AU - Kim, Byung Hak
AU - Kim, In-Bae
AU - Maeda, Sadahiro
TI - A characterization of a certain real hypersurface of type $({\rm A}_2)$ in a complex projective space
JO - Czechoslovak Mathematical Journal
PY - 2017
SP - 271
EP - 278
VL - 67
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-15/
DO - 10.21136/CMJ.2017.0546-15
LA - en
ID - 10_21136_CMJ_2017_0546_15
ER -
%0 Journal Article
%A Kim, Byung Hak
%A Kim, In-Bae
%A Maeda, Sadahiro
%T A characterization of a certain real hypersurface of type $({\rm A}_2)$ in a complex projective space
%J Czechoslovak Mathematical Journal
%D 2017
%P 271-278
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0546-15/
%R 10.21136/CMJ.2017.0546-15
%G en
%F 10_21136_CMJ_2017_0546_15
Kim, Byung Hak; Kim, In-Bae; Maeda, Sadahiro. A characterization of a certain real hypersurface of type $({\rm A}_2)$ in a complex projective space. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 271-278. doi: 10.21136/CMJ.2017.0546-15
[1] Adachi, T., Maeda, S., Udagawa, S.: Circles in a complex projective space. Osaka J. Math. 32 (1995), 709-719. | MR | JFM
[2] Adachi, T., Maeda, S.: Global behaviours of circles in a complex hyperbolic space. Tsukuba J. Math. 21 (1997), 29-42. | DOI | MR | JFM
[3] Adachi, T.: Geodesics on real hypersurfaces of type $( A_2)$ in a complex space form. Monatsh. Math. 153 (2008), 283-293. | DOI | MR | JFM
[4] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one. Trans. Am. Math. Soc. 359 (2007), 3425-3438. | DOI | MR | JFM
[5] Ki, U.-H., Kim, I.-B., Lim, D. H.: Characterizations of real hypersurfaces of type A in a complex space form. Bull. Korean Math. Soc. 47 (2010), 1-15. | DOI | MR | JFM
[6] Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan 28 (1976), 529-540. | DOI | MR | JFM
[7] Maeda, S., Adachi, T.: Characterizations of hypersurfaces of type $ A_2$ in a complex projective space. Bull. Aust. Math. Soc. 77 (2008), 1-8. | DOI | MR | JFM
[8] Maeda, S., Adachi, T., Kim, Y. H.: A characterization of the homogeneous minimal ruled real hypersurface in a complex hyperbolic space. J. Math. Soc. Japan 61 (2009), 315-325. | DOI | MR | JFM
[9] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms. Tight and Taut Submanifolds T. E. Cecil et al. Math. Sci. Res. Inst. Publ. 32, Cambridge Univ. Press, Cambridge (1998), 233-305. | MR | JFM
[10] Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10 (1973), 495-506. | MR | JFM
Cité par Sources :