Finite groups whose all proper subgroups are $\mathcal {C}$-groups
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 513-522.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A group $G$ is said to be a $\mathcal {C}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal {C}$-groups but all of whose proper subgroups are $\mathcal {C}$-groups.
DOI : 10.21136/CMJ.2017.0542-16
Classification : 20D10, 20E34
Keywords: normal subgroup; abnormal subgroup; minimal non-$\mathcal {C}$-group
@article{10_21136_CMJ_2017_0542_16,
     author = {Guo, Pengfei and Liu, Jianjun},
     title = {Finite groups whose all proper subgroups are $\mathcal {C}$-groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {513--522},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.21136/CMJ.2017.0542-16},
     mrnumber = {3819188},
     zbl = {06890387},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/}
}
TY  - JOUR
AU  - Guo, Pengfei
AU  - Liu, Jianjun
TI  - Finite groups whose all proper subgroups are $\mathcal {C}$-groups
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 513
EP  - 522
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/
DO  - 10.21136/CMJ.2017.0542-16
LA  - en
ID  - 10_21136_CMJ_2017_0542_16
ER  - 
%0 Journal Article
%A Guo, Pengfei
%A Liu, Jianjun
%T Finite groups whose all proper subgroups are $\mathcal {C}$-groups
%J Czechoslovak Mathematical Journal
%D 2018
%P 513-522
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/
%R 10.21136/CMJ.2017.0542-16
%G en
%F 10_21136_CMJ_2017_0542_16
Guo, Pengfei; Liu, Jianjun. Finite groups whose all proper subgroups are $\mathcal {C}$-groups. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 513-522. doi : 10.21136/CMJ.2017.0542-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/

Cité par Sources :