Finite groups whose all proper subgroups are $\mathcal {C}$-groups
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 513-522
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A group $G$ is said to be a $\mathcal {C}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal {C}$-groups but all of whose proper subgroups are $\mathcal {C}$-groups.
DOI :
10.21136/CMJ.2017.0542-16
Classification :
20D10, 20E34
Keywords: normal subgroup; abnormal subgroup; minimal non-$\mathcal {C}$-group
Keywords: normal subgroup; abnormal subgroup; minimal non-$\mathcal {C}$-group
@article{10_21136_CMJ_2017_0542_16,
author = {Guo, Pengfei and Liu, Jianjun},
title = {Finite groups whose all proper subgroups are $\mathcal {C}$-groups},
journal = {Czechoslovak Mathematical Journal},
pages = {513--522},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {2018},
doi = {10.21136/CMJ.2017.0542-16},
mrnumber = {3819188},
zbl = {06890387},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/}
}
TY - JOUR
AU - Guo, Pengfei
AU - Liu, Jianjun
TI - Finite groups whose all proper subgroups are $\mathcal {C}$-groups
JO - Czechoslovak Mathematical Journal
PY - 2018
SP - 513
EP - 522
VL - 68
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/
DO - 10.21136/CMJ.2017.0542-16
LA - en
ID - 10_21136_CMJ_2017_0542_16
ER -
%0 Journal Article
%A Guo, Pengfei
%A Liu, Jianjun
%T Finite groups whose all proper subgroups are $\mathcal {C}$-groups
%J Czechoslovak Mathematical Journal
%D 2018
%P 513-522
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/
%R 10.21136/CMJ.2017.0542-16
%G en
%F 10_21136_CMJ_2017_0542_16
Guo, Pengfei; Liu, Jianjun. Finite groups whose all proper subgroups are $\mathcal {C}$-groups. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 513-522. doi: 10.21136/CMJ.2017.0542-16
Cité par Sources :