Keywords: normal subgroup; abnormal subgroup; minimal non-$\mathcal {C}$-group
@article{10_21136_CMJ_2017_0542_16,
author = {Guo, Pengfei and Liu, Jianjun},
title = {Finite groups whose all proper subgroups are $\mathcal {C}$-groups},
journal = {Czechoslovak Mathematical Journal},
pages = {513--522},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2017.0542-16},
mrnumber = {3819188},
zbl = {06890387},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/}
}
TY - JOUR
AU - Guo, Pengfei
AU - Liu, Jianjun
TI - Finite groups whose all proper subgroups are $\mathcal {C}$-groups
JO - Czechoslovak Mathematical Journal
PY - 2018
SP - 513
EP - 522
VL - 68
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/
DO - 10.21136/CMJ.2017.0542-16
LA - en
ID - 10_21136_CMJ_2017_0542_16
ER -
%0 Journal Article
%A Guo, Pengfei
%A Liu, Jianjun
%T Finite groups whose all proper subgroups are $\mathcal {C}$-groups
%J Czechoslovak Mathematical Journal
%D 2018
%P 513-522
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/
%R 10.21136/CMJ.2017.0542-16
%G en
%F 10_21136_CMJ_2017_0542_16
Guo, Pengfei; Liu, Jianjun. Finite groups whose all proper subgroups are $\mathcal {C}$-groups. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 513-522. doi: 10.21136/CMJ.2017.0542-16
[1] Ballester-Bolinches, A., Esteban-Romero, R.: On minimal non-supersoluble groups. Rev. Mat. Iberoam. 23 (2007), 127-142. | DOI | MR | JFM
[2] Ballester-Bolinches, A., Esteban-Romero, R., Robinson, D. J. S.: On finite minimal non-nilpotent groups. Proc. Am. Math. Soc. 133 (2005), 3455-3462. | DOI | MR | JFM
[3] Doerk, K.: Minimal nicht überauflösbare, endliche Gruppen. Math. Z. 91 (1966), 198-205 German. | DOI | MR | JFM
[4] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). | DOI | MR | JFM
[5] Laffey, T. J.: A lemma on finite $p$-groups and some consequences. Proc. Camb. Philos. Soc. 75 (1974), 133-137. | DOI | MR | JFM
[6] Liu, J., Li, S., He, J.: CLT-groups with normal or abnormal subgroups. J. Algebra 362 (2012), 99-106. | DOI | MR | JFM
[7] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian. Trans. Amer. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. | DOI | MR
[8] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1982). | DOI | MR | JFM
[9] Šmidt, O. J.: Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Math. Sbornik 31 (1924), 366-372 Russian with German résumé \99999JFM99999 50.0076.04.
Cité par Sources :