Finite groups whose all proper subgroups are $\mathcal {C}$-groups
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 513-522
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A group $G$ is said to be a $\mathcal {C}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal {C}$-groups but all of whose proper subgroups are $\mathcal {C}$-groups.
A group $G$ is said to be a $\mathcal {C}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal {C}$-groups but all of whose proper subgroups are $\mathcal {C}$-groups.
DOI : 10.21136/CMJ.2017.0542-16
Classification : 20D10, 20E34
Keywords: normal subgroup; abnormal subgroup; minimal non-$\mathcal {C}$-group
@article{10_21136_CMJ_2017_0542_16,
     author = {Guo, Pengfei and Liu, Jianjun},
     title = {Finite groups whose all proper subgroups are $\mathcal {C}$-groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {513--522},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2017.0542-16},
     mrnumber = {3819188},
     zbl = {06890387},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/}
}
TY  - JOUR
AU  - Guo, Pengfei
AU  - Liu, Jianjun
TI  - Finite groups whose all proper subgroups are $\mathcal {C}$-groups
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 513
EP  - 522
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/
DO  - 10.21136/CMJ.2017.0542-16
LA  - en
ID  - 10_21136_CMJ_2017_0542_16
ER  - 
%0 Journal Article
%A Guo, Pengfei
%A Liu, Jianjun
%T Finite groups whose all proper subgroups are $\mathcal {C}$-groups
%J Czechoslovak Mathematical Journal
%D 2018
%P 513-522
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0542-16/
%R 10.21136/CMJ.2017.0542-16
%G en
%F 10_21136_CMJ_2017_0542_16
Guo, Pengfei; Liu, Jianjun. Finite groups whose all proper subgroups are $\mathcal {C}$-groups. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 513-522. doi: 10.21136/CMJ.2017.0542-16

[1] Ballester-Bolinches, A., Esteban-Romero, R.: On minimal non-supersoluble groups. Rev. Mat. Iberoam. 23 (2007), 127-142. | DOI | MR | JFM

[2] Ballester-Bolinches, A., Esteban-Romero, R., Robinson, D. J. S.: On finite minimal non-nilpotent groups. Proc. Am. Math. Soc. 133 (2005), 3455-3462. | DOI | MR | JFM

[3] Doerk, K.: Minimal nicht überauflösbare, endliche Gruppen. Math. Z. 91 (1966), 198-205 German. | DOI | MR | JFM

[4] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). | DOI | MR | JFM

[5] Laffey, T. J.: A lemma on finite $p$-groups and some consequences. Proc. Camb. Philos. Soc. 75 (1974), 133-137. | DOI | MR | JFM

[6] Liu, J., Li, S., He, J.: CLT-groups with normal or abnormal subgroups. J. Algebra 362 (2012), 99-106. | DOI | MR | JFM

[7] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian. Trans. Amer. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. | DOI | MR

[8] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1982). | DOI | MR | JFM

[9] Šmidt, O. J.: Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Math. Sbornik 31 (1924), 366-372 Russian with German résumé \99999JFM99999 50.0076.04.

Cité par Sources :