A curvature identity on a 6-dimensional Riemannian manifold and its applications
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 253-270 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold ``a harmonic manifold is locally symmetric'' and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.\looseness -1
We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold ``a harmonic manifold is locally symmetric'' and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.\looseness -1
DOI : 10.21136/CMJ.2017.0540-15
Classification : 53B20, 53C25
Keywords: Chern-Gauss-Bonnet theorem; curvature identity; locally harmonic manifold
@article{10_21136_CMJ_2017_0540_15,
     author = {Euh, Yunhee and Park, Jeong Hyeong and Sekigawa, Kouei},
     title = {A curvature identity on a 6-dimensional {Riemannian} manifold and its applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {253--270},
     year = {2017},
     volume = {67},
     number = {1},
     doi = {10.21136/CMJ.2017.0540-15},
     mrnumber = {3633010},
     zbl = {06738516},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0540-15/}
}
TY  - JOUR
AU  - Euh, Yunhee
AU  - Park, Jeong Hyeong
AU  - Sekigawa, Kouei
TI  - A curvature identity on a 6-dimensional Riemannian manifold and its applications
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 253
EP  - 270
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0540-15/
DO  - 10.21136/CMJ.2017.0540-15
LA  - en
ID  - 10_21136_CMJ_2017_0540_15
ER  - 
%0 Journal Article
%A Euh, Yunhee
%A Park, Jeong Hyeong
%A Sekigawa, Kouei
%T A curvature identity on a 6-dimensional Riemannian manifold and its applications
%J Czechoslovak Mathematical Journal
%D 2017
%P 253-270
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0540-15/
%R 10.21136/CMJ.2017.0540-15
%G en
%F 10_21136_CMJ_2017_0540_15
Euh, Yunhee; Park, Jeong Hyeong; Sekigawa, Kouei. A curvature identity on a 6-dimensional Riemannian manifold and its applications. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 253-270. doi: 10.21136/CMJ.2017.0540-15

[1] Arias-Marco, T., Kowalski, O.: Classification of 4-dimensional homogeneous weakly Einstein manifolds. Czech. Math. J. 65 (2015), 21-59. | DOI | MR | JFM

[2] Berger, M.: Quelques formules de variation pour une structure riemannienne. Ann. Sci. Éc. Norm. Supér French 3 (1970), 285-294. | DOI | MR | JFM

[3] Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces. Lecture Notes in Mathematics 1598, Springer, Berlin (1995). | DOI | MR | JFM

[4] Besse, A. L.: Manifolds All of Whose Geodesics Are Closed. Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer, Berlin (1978). | DOI | MR | JFM

[5] Boeckx, E., Vanhecke, L.: Unit tangent sphere bundles with constant scalar curvature. Czech. Math. J. 51 (2001), 523-544. | DOI | MR | JFM

[6] Carpenter, P., Gray, A., Willmore, T. J.: The curvature of Einstein symmetric spaces. Q. J. Math., Oxf. II. 33 (1982), 45-64. | DOI | MR | JFM

[7] Chun, S. H., Park, J. H., Sekigawa, K.: H-contact unit tangent sphere bundles of Einstein manifolds. Q. J. Math. 62 (2011), 59-69. | DOI | MR | JFM

[8] Copson, E. T., Ruse, H. S.: Harmonic Riemannian space. Proc. R. Soc. Edinb. 60 (1940), 117-133. | DOI | MR | JFM

[9] Damek, E., Ricci, F.: A class of nonsymmetric harmonic Riemannian spaces. Bull. Am. Math. Soc., New. Ser. 27 (1992), 139-142 \99999DOI99999 10.1090/S0273-0979-1992-00293-8 \goodbreak. | DOI | MR | JFM

[10] Euh, Y., Gilkey, P., Park, J. H., Sekigawa, K.: Transplanting geometrical structures. Differ. Geom. Appl. 31 (2013), 374-387. | DOI | MR | JFM

[11] Euh, Y., Park, J. H., Sekigawa, K.: A curvature identity on a 4-dimensional Riemannian manifold. Result. Math. 63 (2013), 107-114. | DOI | MR | JFM

[12] Euh, Y., Park, J. H., Sekigawa, K.: A generalization of a 4-dimensional Einstein manifold. Math. Slovaca 63 (2013), 595-610. | DOI | MR | JFM

[13] Gilkey, P., Park, J. H., Sekigawa, K.: Universal curvature identities. Differ. Geom. Appl. 29 (2011), 770-778. | DOI | MR | JFM

[14] Gilkey, P., Park, J. H., Sekigawa, K.: Universal curvature identities II. J. Geom. Phys. 62 (2012), 814-825. | DOI | MR | JFM

[15] Gilkey, P., Park, J. H., Sekigawa, K.: Universal curvature identities III. Int. J. Geom. Methods Mod. Phys. 10 Article ID 1350025, 21 pages (2013). | DOI | MR | JFM

[16] Gilkey, P., Park, J. H., Sekigawa, K.: Universal curvature identities and Euler Lagrange formulas for Kähler manifolds. J. Math. Soc. Japan 68 (2016), 459-487. | DOI | MR | JFM

[17] Gray, A., Willmore, T. J.: Mean-value theorems for Riemannian manifolds. Proc. R. Soc. Edinb., Sect. A 92 (1982), 343-364. | DOI | MR | JFM

[18] Kreyssig, P.: An introduction to harmonic manifolds and the Lichnerowicz conjecture. Available at arXiv:1007.0477v1.

[19] Ledger, A. J.: Harmonic Spaces. Ph.D. Thesis, University of Durham, Durham (1954).

[20] Ledger, A. J.: Symmetric harmonic spaces. J. London Math. Soc. 32 (1957), 53-56. | DOI | MR | JFM

[21] Lichnerowicz, A.: Sur les espaces riemanniens complétement harmoniques. Bull. Soc. Math. Fr. French 72 (1944), 146-168. | DOI | MR | JFM

[22] Lichnerowicz, A.: Géométrie des groupes de transformations. Travaux et recherches mathématiques 3, Dunod, Paris French (1958). | MR | JFM

[23] Nikolayevsky, Y.: Two theorems on harmonic manifolds. Comment. Math. Helv. 80 (2005), 29-50. | DOI | MR | JFM

[24] Patterson, E. M.: A class of critical Riemannian metrics. J. Lond. Math. Soc., II. Ser. 23 (1981), 349-358. | DOI | MR | JFM

[25] Sakai, T.: On eigen-values of Laplacian and curvature of Riemannian manifold. Tohoku Math. J., II. Ser. 23 (1971), 589-603. | DOI | MR | JFM

[26] Sekigawa, K.: On 4-dimensional connected Einstein spaces satisfying the condition $R(X,Y)\cdot R=0$. Sci. Rep. Niigata Univ., Ser. A 7 (1969), 29-31. | MR | JFM

[27] Sekigawa, K., Vanhecke, L.: Volume-preserving geodesic symmetries on four-dimensional Kähler manifolds. Proc. Symp. Differential geometry, Peñiscola 1985, Lect. Notes Math. 1209, Springer, Berlin 275-291 (1986). | DOI | MR | JFM

[28] Szabó, Z. I.: The Lichnerowicz conjecture on harmonic manifolds. J. Differ. Geom. 31 (1990), 1-28. | DOI | MR | JFM

[29] Tachibana, S.: On the characteristic function of spaces of constant holomorphic curvature. Colloq. Math. 26 (1972), 149-155. | DOI | MR | JFM

[30] Walker, A. G.: On Lichnerowicz's conjecture for harmonic 4-spaces. J. Lond. Math. Soc. 24 (1949), 21-28. | DOI | MR | JFM

[31] Watanabe, Y.: On the characteristic function of harmonic Kählerian spaces. Tohoku Math. J., II. Ser. 27 (1975), 13-24. | DOI | MR | JFM

[32] Watanabe, Y.: On the characteristic functions of harmonic quaternion Kählerian spaces. Kōdai Math. Semin. Rep. 27 (1976), 410-420. | DOI | MR | JFM

[33] Watanabe, Y.: The sectional curvature of a 5-dimensional harmonic Riemannian manifold. Kodai Math. J. 6 (1983), 106-109 \99999DOI99999 10.2996/kmj/1138036667 \filbreak. | DOI | MR | JFM

Cité par Sources :