Boundedness of para-product operators on spaces of homogeneous type
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 235-252 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain the boundedness of Calderón-Zygmund singular integral operators $T$ of non-convolution type on Hardy spaces $H^p(\mathcal X)$ for $ 1/{(1+\epsilon )}
We obtain the boundedness of Calderón-Zygmund singular integral operators $T$ of non-convolution type on Hardy spaces $H^p(\mathcal X)$ for $ 1/{(1+\epsilon )}$, where ${\mathcal X}$ is a space of homogeneous type in the sense of Coifman and Weiss (1971), and $\epsilon $ is the regularity exponent of the kernel of the singular integral operator $T$. Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón's identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was used in the literature.
DOI : 10.21136/CMJ.2017.0536-15
Classification : 42B25, 42B30
Keywords: boundedness; Calderón-Zygmund singular integral operator; para-product; spaces of homogeneous type
@article{10_21136_CMJ_2017_0536_15,
     author = {Xiao, Yayuan},
     title = {Boundedness of para-product operators on spaces of homogeneous type},
     journal = {Czechoslovak Mathematical Journal},
     pages = {235--252},
     year = {2017},
     volume = {67},
     number = {1},
     doi = {10.21136/CMJ.2017.0536-15},
     mrnumber = {3633009},
     zbl = {06738515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0536-15/}
}
TY  - JOUR
AU  - Xiao, Yayuan
TI  - Boundedness of para-product operators on spaces of homogeneous type
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 235
EP  - 252
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0536-15/
DO  - 10.21136/CMJ.2017.0536-15
LA  - en
ID  - 10_21136_CMJ_2017_0536_15
ER  - 
%0 Journal Article
%A Xiao, Yayuan
%T Boundedness of para-product operators on spaces of homogeneous type
%J Czechoslovak Mathematical Journal
%D 2017
%P 235-252
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0536-15/
%R 10.21136/CMJ.2017.0536-15
%G en
%F 10_21136_CMJ_2017_0536_15
Xiao, Yayuan. Boundedness of para-product operators on spaces of homogeneous type. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 235-252. doi: 10.21136/CMJ.2017.0536-15

[1] Christ, M.: A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61 (1990), 601-628. | DOI | MR | JFM

[2] Coifman, R. R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. Lecture Notes in Mathematics 242, Springer, Berlin French (1971). | DOI | MR | JFM

[3] Coifman, R. R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83 (1977), 569-645. | DOI | MR | JFM

[4] David, G., Journé, J.-L., Semmes, S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1 (1985), 1-56. | DOI | MR | JFM

[5] Deng, D., Han, Y.: Harmonic Analysis on Spaces of Homogeneous Type. Lecture Notes in Mathematics 1966, Springer, Berlin (2009). | DOI | MR | JFM

[6] Fefferman, C., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. | DOI | MR | JFM

[7] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34-170. | DOI | MR | JFM

[8] Han, Y.: Calderón-type reproducing formula and the $Tb$ theorem. Rev. Mat. Iberoam. 10 (1994), 51-91. | DOI | MR | JFM

[9] Han, Y.: Discrete Calderón-type reproducing formula. Acta Math. Sin., Engl. Ser. 16 (2000), 277-294. | DOI | MR | JFM

[10] Han, Y., Sawyer, E. T.: Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces. Mem. Am. Math. Soc. 110 (1994), no. 530, 126 pages. | DOI | MR | JFM

[11] Macías, R. A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33 (1979), 257-270. | DOI | MR | JFM

[12] Meyer, Y., Coifman, R.: Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge (1997). | MR | JFM

[13] Sawyer, E., Wheeden, R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114 (1992), 813-874. | DOI | MR | JFM

Cité par Sources :