Keywords: boundedness; Calderón-Zygmund singular integral operator; para-product; spaces of homogeneous type
@article{10_21136_CMJ_2017_0536_15,
author = {Xiao, Yayuan},
title = {Boundedness of para-product operators on spaces of homogeneous type},
journal = {Czechoslovak Mathematical Journal},
pages = {235--252},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0536-15},
mrnumber = {3633009},
zbl = {06738515},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0536-15/}
}
TY - JOUR AU - Xiao, Yayuan TI - Boundedness of para-product operators on spaces of homogeneous type JO - Czechoslovak Mathematical Journal PY - 2017 SP - 235 EP - 252 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0536-15/ DO - 10.21136/CMJ.2017.0536-15 LA - en ID - 10_21136_CMJ_2017_0536_15 ER -
%0 Journal Article %A Xiao, Yayuan %T Boundedness of para-product operators on spaces of homogeneous type %J Czechoslovak Mathematical Journal %D 2017 %P 235-252 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0536-15/ %R 10.21136/CMJ.2017.0536-15 %G en %F 10_21136_CMJ_2017_0536_15
Xiao, Yayuan. Boundedness of para-product operators on spaces of homogeneous type. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 235-252. doi: 10.21136/CMJ.2017.0536-15
[1] Christ, M.: A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61 (1990), 601-628. | DOI | MR | JFM
[2] Coifman, R. R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. Lecture Notes in Mathematics 242, Springer, Berlin French (1971). | DOI | MR | JFM
[3] Coifman, R. R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83 (1977), 569-645. | DOI | MR | JFM
[4] David, G., Journé, J.-L., Semmes, S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1 (1985), 1-56. | DOI | MR | JFM
[5] Deng, D., Han, Y.: Harmonic Analysis on Spaces of Homogeneous Type. Lecture Notes in Mathematics 1966, Springer, Berlin (2009). | DOI | MR | JFM
[6] Fefferman, C., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. | DOI | MR | JFM
[7] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34-170. | DOI | MR | JFM
[8] Han, Y.: Calderón-type reproducing formula and the $Tb$ theorem. Rev. Mat. Iberoam. 10 (1994), 51-91. | DOI | MR | JFM
[9] Han, Y.: Discrete Calderón-type reproducing formula. Acta Math. Sin., Engl. Ser. 16 (2000), 277-294. | DOI | MR | JFM
[10] Han, Y., Sawyer, E. T.: Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces. Mem. Am. Math. Soc. 110 (1994), no. 530, 126 pages. | DOI | MR | JFM
[11] Macías, R. A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33 (1979), 257-270. | DOI | MR | JFM
[12] Meyer, Y., Coifman, R.: Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge (1997). | MR | JFM
[13] Sawyer, E., Wheeden, R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114 (1992), 813-874. | DOI | MR | JFM
Cité par Sources :