On the regularity of the one-sided Hardy-Littlewood maximal functions
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 219-234.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators $\mathcal {M}^+$ and $\mathcal {M}^-$. More precisely, we prove that $\mathcal {M}^+$ and $\mathcal {M}^-$ map $W^{1,p}(\mathbb {R})\rightarrow W^{1,p}(\mathbb {R})$ with $1$, boundedly and continuously. In addition, we show that the discrete versions $M^+$ and $M^-$ map ${\rm BV}(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ boundedly and map $l^1(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ continuously. Specially, we obtain the sharp variation inequalities of $M^+$ and $M^-$, that is, $${\rm Var}(M^{+}(f))\leq {\rm Var}(f)\quad \text {and}\quad {\rm Var}(M^{-}(f))\leq {\rm Var}(f)$$ if $f\in {\rm BV}(\mathbb {Z})$, where ${\rm Var}(f)$ is the total variation of $f$ on $\mathbb {Z}$ and ${\rm BV}(\mathbb {Z})$ is the set of all functions $f\colon \mathbb {Z}\rightarrow \mathbb {R}$ satisfying ${\rm Var}(f)\infty $.
DOI : 10.21136/CMJ.2017.0475-15
Classification : 42B25, 46E35
Keywords: one-sided maximal operator; Sobolev space; bounded variation; continuity
@article{10_21136_CMJ_2017_0475_15,
     author = {Liu, Feng and Mao, Suzhen},
     title = {On the regularity of the one-sided {Hardy-Littlewood} maximal functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {219--234},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2017},
     doi = {10.21136/CMJ.2017.0475-15},
     mrnumber = {3633008},
     zbl = {06738514},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/}
}
TY  - JOUR
AU  - Liu, Feng
AU  - Mao, Suzhen
TI  - On the regularity of the one-sided Hardy-Littlewood maximal functions
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 219
EP  - 234
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/
DO  - 10.21136/CMJ.2017.0475-15
LA  - en
ID  - 10_21136_CMJ_2017_0475_15
ER  - 
%0 Journal Article
%A Liu, Feng
%A Mao, Suzhen
%T On the regularity of the one-sided Hardy-Littlewood maximal functions
%J Czechoslovak Mathematical Journal
%D 2017
%P 219-234
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/
%R 10.21136/CMJ.2017.0475-15
%G en
%F 10_21136_CMJ_2017_0475_15
Liu, Feng; Mao, Suzhen. On the regularity of the one-sided Hardy-Littlewood maximal functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 219-234. doi : 10.21136/CMJ.2017.0475-15. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/

Cité par Sources :