On the regularity of the one-sided Hardy-Littlewood maximal functions
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 219-234
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators $\mathcal {M}^+$ and $\mathcal {M}^-$. More precisely, we prove that $\mathcal {M}^+$ and $\mathcal {M}^-$ map $W^{1,p}(\mathbb {R})\rightarrow W^{1,p}(\mathbb {R})$ with $1$, boundedly and continuously. In addition, we show that the discrete versions $M^+$ and $M^-$ map ${\rm BV}(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ boundedly and map $l^1(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ continuously. Specially, we obtain the sharp variation inequalities of $M^+$ and $M^-$, that is, $${\rm Var}(M^{+}(f))\leq {\rm Var}(f)\quad \text {and}\quad {\rm Var}(M^{-}(f))\leq {\rm Var}(f)$$ if $f\in {\rm BV}(\mathbb {Z})$, where ${\rm Var}(f)$ is the total variation of $f$ on $\mathbb {Z}$ and ${\rm BV}(\mathbb {Z})$ is the set of all functions $f\colon \mathbb {Z}\rightarrow \mathbb {R}$ satisfying ${\rm Var}(f)\infty $.
DOI :
10.21136/CMJ.2017.0475-15
Classification :
42B25, 46E35
Keywords: one-sided maximal operator; Sobolev space; bounded variation; continuity
Keywords: one-sided maximal operator; Sobolev space; bounded variation; continuity
@article{10_21136_CMJ_2017_0475_15,
author = {Liu, Feng and Mao, Suzhen},
title = {On the regularity of the one-sided {Hardy-Littlewood} maximal functions},
journal = {Czechoslovak Mathematical Journal},
pages = {219--234},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2017},
doi = {10.21136/CMJ.2017.0475-15},
mrnumber = {3633008},
zbl = {06738514},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/}
}
TY - JOUR AU - Liu, Feng AU - Mao, Suzhen TI - On the regularity of the one-sided Hardy-Littlewood maximal functions JO - Czechoslovak Mathematical Journal PY - 2017 SP - 219 EP - 234 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/ DO - 10.21136/CMJ.2017.0475-15 LA - en ID - 10_21136_CMJ_2017_0475_15 ER -
%0 Journal Article %A Liu, Feng %A Mao, Suzhen %T On the regularity of the one-sided Hardy-Littlewood maximal functions %J Czechoslovak Mathematical Journal %D 2017 %P 219-234 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/ %R 10.21136/CMJ.2017.0475-15 %G en %F 10_21136_CMJ_2017_0475_15
Liu, Feng; Mao, Suzhen. On the regularity of the one-sided Hardy-Littlewood maximal functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 219-234. doi: 10.21136/CMJ.2017.0475-15
Cité par Sources :