Keywords: one-sided maximal operator; Sobolev space; bounded variation; continuity
@article{10_21136_CMJ_2017_0475_15,
author = {Liu, Feng and Mao, Suzhen},
title = {On the regularity of the one-sided {Hardy-Littlewood} maximal functions},
journal = {Czechoslovak Mathematical Journal},
pages = {219--234},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0475-15},
mrnumber = {3633008},
zbl = {06738514},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/}
}
TY - JOUR AU - Liu, Feng AU - Mao, Suzhen TI - On the regularity of the one-sided Hardy-Littlewood maximal functions JO - Czechoslovak Mathematical Journal PY - 2017 SP - 219 EP - 234 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/ DO - 10.21136/CMJ.2017.0475-15 LA - en ID - 10_21136_CMJ_2017_0475_15 ER -
%0 Journal Article %A Liu, Feng %A Mao, Suzhen %T On the regularity of the one-sided Hardy-Littlewood maximal functions %J Czechoslovak Mathematical Journal %D 2017 %P 219-234 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0475-15/ %R 10.21136/CMJ.2017.0475-15 %G en %F 10_21136_CMJ_2017_0475_15
Liu, Feng; Mao, Suzhen. On the regularity of the one-sided Hardy-Littlewood maximal functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 219-234. doi: 10.21136/CMJ.2017.0475-15
[1] Aldaz, J. M., Lázaro, J. Pérez: Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Am. Math. Soc. 359 (2007), 2443-2461. | DOI | MR | JFM
[2] Bober, J., Carneiro, E., Hughes, K., Pierce, L. B.: On a discrete version of Tanaka's theorem for maximal functions. Proc. Am. Math. Soc. 140 (2012), 1669-1680. | DOI | MR | JFM
[3] Calderón, A. P.: Ergodic theory and translation invariant operators. Proc. Natl. Acad. Sci. USA 59 (1968), 349-353. | DOI | MR | JFM
[4] Carneiro, E., Hughes, K.: On the endpoint regularity of discrete maximal operators. Math. Res. Lett. 19 (2012), 1245-1262. | DOI | MR | JFM
[5] Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Am. Math. Soc. 136 (2008), 4395-4404. | DOI | MR | JFM
[6] Dunford, N., Schwartz, J.: Convergence almost everywhere of operator averages. Proc. Natl. Acad. Sci. USA 41 (1955), 229-231. | DOI | MR | JFM
[7] Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29 (2004), 167-176. | MR | JFM
[8] Hardy, G. H., Littlewood, J. E.: A maximal theorem with function-theoretic applications. Acta Math. 54 (1930), 81-116 \99999JFM99999 56.0264.02. | DOI | MR
[9] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Isr. J. Math. 100 (1997), 117-124. | DOI | MR | JFM
[10] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine Angew. Math. 503 (1998), 161-167. | DOI | MR | JFM
[11] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35 (2003), 529-535. | DOI | MR | JFM
[12] Kurka, O.: On the variation of the Hardy-Littlewood maximal function. Ann. Acad. Sci. Fenn. Math. 40 (2015), 109-133. | DOI | MR | JFM
[13] Liu, F., Chen, T., Wu, H.: A note on the endpoint regularity of the Hardy-Littlewood maximal functions. Bull. Aust. Math. Soc. 94 (2016), 121-130. | DOI | MR | JFM
[14] Liu, F., Wu, H.: On the regularity of the multisublinear maximal functions. Can. Math. Bull. 58 (2015), 808-817. | DOI | MR | JFM
[15] Luiro, H.: Continuity of the maximal operator in Sobolev spaces. Proc. Am. Math. Soc. 135 (2007), 243-251. | DOI | MR | JFM
[16] Luiro, H.: On the regularity of the Hardy-Littlewood maximal operator on subdomains of $\mathbb{R}^n$. Proc. Edinb. Math. Soc. II. 53 (2010), 211-237. | DOI | MR | JFM
[17] Sawyer, E.: Weighted inequalities for the one-sided Hardy-Littlewood maximal function. Trans. Am. Math. Soc. 297 (1986), 53-61. | DOI | MR | JFM
[18] Stein, E. M., Shakarchi, R.: Real Analysis. Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis 3, Princeton University Press, Princeton (2005). | MR | JFM
[19] Tanaka, H.: A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function. Bull. Aust. Math. Soc. 65 (2002), 253-258. | DOI | MR | JFM
[20] Temur, F.: On regularity of the discrete Hardy-Littlewood maximal function. Available at ArXiv:1303.3993v1 [math.CA].
Cité par Sources :