A characterization of the Riemann extension in terms of harmonicity
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 197-206
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
If $(M,\nabla )$ is a manifold with a symmetric linear connection, then $T^{*}M$ can be endowed with the natural Riemann extension $\bar {g}$ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to $\bar {g}$ initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure $\mathcal {P}$ on $(T^{*}M,\bar {g})$ and prove that $\mathcal {P}$ is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if $\bar {g}$ reduces to the classical Riemann extension introduced by E. M. Patterson and A. G. Walker (1952).
If $(M,\nabla )$ is a manifold with a symmetric linear connection, then $T^{*}M$ can be endowed with the natural Riemann extension $\bar {g}$ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to $\bar {g}$ initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure $\mathcal {P}$ on $(T^{*}M,\bar {g})$ and prove that $\mathcal {P}$ is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if $\bar {g}$ reduces to the classical Riemann extension introduced by E. M. Patterson and A. G. Walker (1952).
DOI :
10.21136/CMJ.2017.0459-15
Classification :
53B05, 53C07, 53C43, 53C50, 58E20
Keywords: semi-Riemannian manifold; cotangent bundle; natural Riemann extension; harmonic tensor field
Keywords: semi-Riemannian manifold; cotangent bundle; natural Riemann extension; harmonic tensor field
@article{10_21136_CMJ_2017_0459_15,
author = {Bejan, Cornelia-Livia and Eken, \c{S}emsi},
title = {A characterization of the {Riemann} extension in terms of harmonicity},
journal = {Czechoslovak Mathematical Journal},
pages = {197--206},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0459-15},
mrnumber = {3633006},
zbl = {06738512},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-15/}
}
TY - JOUR AU - Bejan, Cornelia-Livia AU - Eken, Şemsi TI - A characterization of the Riemann extension in terms of harmonicity JO - Czechoslovak Mathematical Journal PY - 2017 SP - 197 EP - 206 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-15/ DO - 10.21136/CMJ.2017.0459-15 LA - en ID - 10_21136_CMJ_2017_0459_15 ER -
%0 Journal Article %A Bejan, Cornelia-Livia %A Eken, Şemsi %T A characterization of the Riemann extension in terms of harmonicity %J Czechoslovak Mathematical Journal %D 2017 %P 197-206 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-15/ %R 10.21136/CMJ.2017.0459-15 %G en %F 10_21136_CMJ_2017_0459_15
Bejan, Cornelia-Livia; Eken, Şemsi. A characterization of the Riemann extension in terms of harmonicity. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 197-206. doi: 10.21136/CMJ.2017.0459-15
Cité par Sources :