A characterization of the Riemann extension in terms of harmonicity
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 197-206.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $(M,\nabla )$ is a manifold with a symmetric linear connection, then $T^{*}M$ can be endowed with the natural Riemann extension $\bar {g}$ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to $\bar {g}$ initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure $\mathcal {P}$ on $(T^{*}M,\bar {g})$ and prove that $\mathcal {P}$ is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if $\bar {g}$ reduces to the classical Riemann extension introduced by E. M. Patterson and A. G. Walker (1952).
DOI : 10.21136/CMJ.2017.0459-15
Classification : 53B05, 53C07, 53C43, 53C50, 58E20
Keywords: semi-Riemannian manifold; cotangent bundle; natural Riemann extension; harmonic tensor field
@article{10_21136_CMJ_2017_0459_15,
     author = {Bejan, Cornelia-Livia and Eken, \c{S}emsi},
     title = {A characterization of the {Riemann} extension in terms of harmonicity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {197--206},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2017},
     doi = {10.21136/CMJ.2017.0459-15},
     mrnumber = {3633006},
     zbl = {06738512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-15/}
}
TY  - JOUR
AU  - Bejan, Cornelia-Livia
AU  - Eken, Şemsi
TI  - A characterization of the Riemann extension in terms of harmonicity
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 197
EP  - 206
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-15/
DO  - 10.21136/CMJ.2017.0459-15
LA  - en
ID  - 10_21136_CMJ_2017_0459_15
ER  - 
%0 Journal Article
%A Bejan, Cornelia-Livia
%A Eken, Şemsi
%T A characterization of the Riemann extension in terms of harmonicity
%J Czechoslovak Mathematical Journal
%D 2017
%P 197-206
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-15/
%R 10.21136/CMJ.2017.0459-15
%G en
%F 10_21136_CMJ_2017_0459_15
Bejan, Cornelia-Livia; Eken, Şemsi. A characterization of the Riemann extension in terms of harmonicity. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 197-206. doi : 10.21136/CMJ.2017.0459-15. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-15/

Cité par Sources :