Keywords: symmetry class of polynomials; general linear group; representation; irreducible character; induced operator
@article{10_21136_CMJ_2017_0458_16,
author = {Zamani, Yousef and Ranjbari, Mahin},
title = {Representations of the general linear group over symmetry classes of polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {267--276},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2017.0458-16},
mrnumber = {3783598},
zbl = {06861580},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/}
}
TY - JOUR AU - Zamani, Yousef AU - Ranjbari, Mahin TI - Representations of the general linear group over symmetry classes of polynomials JO - Czechoslovak Mathematical Journal PY - 2018 SP - 267 EP - 276 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/ DO - 10.21136/CMJ.2017.0458-16 LA - en ID - 10_21136_CMJ_2017_0458_16 ER -
%0 Journal Article %A Zamani, Yousef %A Ranjbari, Mahin %T Representations of the general linear group over symmetry classes of polynomials %J Czechoslovak Mathematical Journal %D 2018 %P 267-276 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/ %R 10.21136/CMJ.2017.0458-16 %G en %F 10_21136_CMJ_2017_0458_16
Zamani, Yousef; Ranjbari, Mahin. Representations of the general linear group over symmetry classes of polynomials. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 267-276. doi: 10.21136/CMJ.2017.0458-16
[1] Babaei, E., Zamani, Y.: Symmetry classes of polynomials associated with the dihedral group. Bull. Iran. Math. Soc. 40 (2014), 863-874. | MR | JFM
[2] Babaei, E., Zamani, Y.: Symmetry classes of polynomials associated with the direct product of permutation groups. Int. J. Group Theory 3 (2014), 63-69. | MR | JFM
[3] Babaei, E., Zamani, Y., Shahryari, M.: Symmetry classes of polynomials. Commun. Algebra 44 (2016), 1514-1530. | DOI | MR | JFM
[4] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69, Academic Press, New York (1976). | MR | JFM
[5] Merris, R.: Multilinear Algebra. Algebra, Logic and Applications 8, Gordon and Breach Science Publishers, Amsterdam (1997). | MR | JFM
[6] Ranjbari, M., Zamani, Y.: Induced operators on symmetry classes of polynomials. Int. J. Group Theory 6 (2017), 21-35. | MR
[7] Rodtes, K.: Symmetry classes of polynomials associated to the semidihedral group and o-bases. J. Algebra Appl. 13 (2014), Article ID 1450059, 7 pages. | DOI | MR | JFM
[8] Shahryari, M.: Relative symmetric polynomials. Linear Algebra Appl. 433 (2010), 1410-1421. | DOI | MR | JFM
[9] Zamani, Y., Babaei, E.: Symmetry classes of polynomials associated with the dicyclic group. Asian-Eur. J. Math. 6 (2013), Article ID 1350033, 10 pages. | DOI | MR | JFM
[10] Zamani, Y., Babaei, E.: The dimensions of cyclic symmetry classes of polynomials. J. Algebra Appl. 13 (2014), Article ID 1350085, 10 pages. | DOI | MR | JFM
[11] Zamani, Y., Ranjbari, M.: Induced operators on the space of homogeneous polynomials. Asian-Eur. J. Math. 9 (2016), Article ID 1650038, 15 pages. | DOI | MR | JFM
Cité par Sources :