Representations of the general linear group over symmetry classes of polynomials
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 267-276
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $V$ be the complex vector space of homogeneous linear polynomials in the variables $x_{1}, \ldots , x_{m}$. Suppose $G$ is a subgroup of $S_{m}$, and $\chi $ is an irreducible character of $G$. Let $H_{d}(G,\chi )$ be the symmetry class of polynomials of degree $d$ with respect to $G$ and $\chi $. \endgraf For any linear operator $T$ acting on $V$, there is a (unique) induced operator $K_{\chi } (T)\in {\rm End}(H_{d}(G,\chi ))$ acting on symmetrized decomposable polynomials by $$ K_{\chi }(T)(f_1\ast f_2\ast \ldots \ast f_d)=Tf_1\ast Tf_2\ast \ldots \ast Tf_d. $$ In this paper, we show that the representation $T\mapsto K_{\chi } (T)$ of the general linear group $GL(V)$ is equivalent to the direct sum of $\chi (1)$ copies of a representation (not necessarily irreducible) $T\mapsto B_{\chi }^{G}(T)$.
DOI :
10.21136/CMJ.2017.0458-16
Classification :
05E05, 15A69, 20C15
Keywords: symmetry class of polynomials; general linear group; representation; irreducible character; induced operator
Keywords: symmetry class of polynomials; general linear group; representation; irreducible character; induced operator
@article{10_21136_CMJ_2017_0458_16,
author = {Zamani, Yousef and Ranjbari, Mahin},
title = {Representations of the general linear group over symmetry classes of polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {267--276},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2018},
doi = {10.21136/CMJ.2017.0458-16},
mrnumber = {3783598},
zbl = {06861580},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/}
}
TY - JOUR AU - Zamani, Yousef AU - Ranjbari, Mahin TI - Representations of the general linear group over symmetry classes of polynomials JO - Czechoslovak Mathematical Journal PY - 2018 SP - 267 EP - 276 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/ DO - 10.21136/CMJ.2017.0458-16 LA - en ID - 10_21136_CMJ_2017_0458_16 ER -
%0 Journal Article %A Zamani, Yousef %A Ranjbari, Mahin %T Representations of the general linear group over symmetry classes of polynomials %J Czechoslovak Mathematical Journal %D 2018 %P 267-276 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/ %R 10.21136/CMJ.2017.0458-16 %G en %F 10_21136_CMJ_2017_0458_16
Zamani, Yousef; Ranjbari, Mahin. Representations of the general linear group over symmetry classes of polynomials. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 267-276. doi: 10.21136/CMJ.2017.0458-16
Cité par Sources :