Representations of the general linear group over symmetry classes of polynomials
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 267-276 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $V$ be the complex vector space of homogeneous linear polynomials in the variables $x_{1}, \ldots , x_{m}$. Suppose $G$ is a subgroup of $S_{m}$, and $\chi $ is an irreducible character of $G$. Let $H_{d}(G,\chi )$ be the symmetry class of polynomials of degree $d$ with respect to $G$ and $\chi $. \endgraf For any linear operator $T$ acting on $V$, there is a (unique) induced operator $K_{\chi } (T)\in {\rm End}(H_{d}(G,\chi ))$ acting on symmetrized decomposable polynomials by $$ K_{\chi }(T)(f_1\ast f_2\ast \ldots \ast f_d)=Tf_1\ast Tf_2\ast \ldots \ast Tf_d. $$ In this paper, we show that the representation $T\mapsto K_{\chi } (T)$ of the general linear group $GL(V)$ is equivalent to the direct sum of $\chi (1)$ copies of a representation (not necessarily irreducible) $T\mapsto B_{\chi }^{G}(T)$.
Let $V$ be the complex vector space of homogeneous linear polynomials in the variables $x_{1}, \ldots , x_{m}$. Suppose $G$ is a subgroup of $S_{m}$, and $\chi $ is an irreducible character of $G$. Let $H_{d}(G,\chi )$ be the symmetry class of polynomials of degree $d$ with respect to $G$ and $\chi $. \endgraf For any linear operator $T$ acting on $V$, there is a (unique) induced operator $K_{\chi } (T)\in {\rm End}(H_{d}(G,\chi ))$ acting on symmetrized decomposable polynomials by $$ K_{\chi }(T)(f_1\ast f_2\ast \ldots \ast f_d)=Tf_1\ast Tf_2\ast \ldots \ast Tf_d. $$ In this paper, we show that the representation $T\mapsto K_{\chi } (T)$ of the general linear group $GL(V)$ is equivalent to the direct sum of $\chi (1)$ copies of a representation (not necessarily irreducible) $T\mapsto B_{\chi }^{G}(T)$.
DOI : 10.21136/CMJ.2017.0458-16
Classification : 05E05, 15A69, 20C15
Keywords: symmetry class of polynomials; general linear group; representation; irreducible character; induced operator
@article{10_21136_CMJ_2017_0458_16,
     author = {Zamani, Yousef and Ranjbari, Mahin},
     title = {Representations of the general linear group over symmetry classes of polynomials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {267--276},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2017.0458-16},
     mrnumber = {3783598},
     zbl = {06861580},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/}
}
TY  - JOUR
AU  - Zamani, Yousef
AU  - Ranjbari, Mahin
TI  - Representations of the general linear group over symmetry classes of polynomials
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 267
EP  - 276
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/
DO  - 10.21136/CMJ.2017.0458-16
LA  - en
ID  - 10_21136_CMJ_2017_0458_16
ER  - 
%0 Journal Article
%A Zamani, Yousef
%A Ranjbari, Mahin
%T Representations of the general linear group over symmetry classes of polynomials
%J Czechoslovak Mathematical Journal
%D 2018
%P 267-276
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/
%R 10.21136/CMJ.2017.0458-16
%G en
%F 10_21136_CMJ_2017_0458_16
Zamani, Yousef; Ranjbari, Mahin. Representations of the general linear group over symmetry classes of polynomials. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 267-276. doi: 10.21136/CMJ.2017.0458-16

[1] Babaei, E., Zamani, Y.: Symmetry classes of polynomials associated with the dihedral group. Bull. Iran. Math. Soc. 40 (2014), 863-874. | MR | JFM

[2] Babaei, E., Zamani, Y.: Symmetry classes of polynomials associated with the direct product of permutation groups. Int. J. Group Theory 3 (2014), 63-69. | MR | JFM

[3] Babaei, E., Zamani, Y., Shahryari, M.: Symmetry classes of polynomials. Commun. Algebra 44 (2016), 1514-1530. | DOI | MR | JFM

[4] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69, Academic Press, New York (1976). | MR | JFM

[5] Merris, R.: Multilinear Algebra. Algebra, Logic and Applications 8, Gordon and Breach Science Publishers, Amsterdam (1997). | MR | JFM

[6] Ranjbari, M., Zamani, Y.: Induced operators on symmetry classes of polynomials. Int. J. Group Theory 6 (2017), 21-35. | MR

[7] Rodtes, K.: Symmetry classes of polynomials associated to the semidihedral group and o-bases. J. Algebra Appl. 13 (2014), Article ID 1450059, 7 pages. | DOI | MR | JFM

[8] Shahryari, M.: Relative symmetric polynomials. Linear Algebra Appl. 433 (2010), 1410-1421. | DOI | MR | JFM

[9] Zamani, Y., Babaei, E.: Symmetry classes of polynomials associated with the dicyclic group. Asian-Eur. J. Math. 6 (2013), Article ID 1350033, 10 pages. | DOI | MR | JFM

[10] Zamani, Y., Babaei, E.: The dimensions of cyclic symmetry classes of polynomials. J. Algebra Appl. 13 (2014), Article ID 1350085, 10 pages. | DOI | MR | JFM

[11] Zamani, Y., Ranjbari, M.: Induced operators on the space of homogeneous polynomials. Asian-Eur. J. Math. 9 (2016), Article ID 1650038, 15 pages. | DOI | MR | JFM

Cité par Sources :