Representations of the general linear group over symmetry classes of polynomials
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 267-276.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $V$ be the complex vector space of homogeneous linear polynomials in the variables $x_{1}, \ldots , x_{m}$. Suppose $G$ is a subgroup of $S_{m}$, and $\chi $ is an irreducible character of $G$. Let $H_{d}(G,\chi )$ be the symmetry class of polynomials of degree $d$ with respect to $G$ and $\chi $. \endgraf For any linear operator $T$ acting on $V$, there is a (unique) induced operator $K_{\chi } (T)\in {\rm End}(H_{d}(G,\chi ))$ acting on symmetrized decomposable polynomials by $$ K_{\chi }(T)(f_1\ast f_2\ast \ldots \ast f_d)=Tf_1\ast Tf_2\ast \ldots \ast Tf_d. $$ In this paper, we show that the representation $T\mapsto K_{\chi } (T)$ of the general linear group $GL(V)$ is equivalent to the direct sum of $\chi (1)$ copies of a representation (not necessarily irreducible) $T\mapsto B_{\chi }^{G}(T)$.
DOI : 10.21136/CMJ.2017.0458-16
Classification : 05E05, 15A69, 20C15
Keywords: symmetry class of polynomials; general linear group; representation; irreducible character; induced operator
@article{10_21136_CMJ_2017_0458_16,
     author = {Zamani, Yousef and Ranjbari, Mahin},
     title = {Representations of the general linear group over symmetry classes of polynomials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {267--276},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2018},
     doi = {10.21136/CMJ.2017.0458-16},
     mrnumber = {3783598},
     zbl = {06861580},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/}
}
TY  - JOUR
AU  - Zamani, Yousef
AU  - Ranjbari, Mahin
TI  - Representations of the general linear group over symmetry classes of polynomials
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 267
EP  - 276
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/
DO  - 10.21136/CMJ.2017.0458-16
LA  - en
ID  - 10_21136_CMJ_2017_0458_16
ER  - 
%0 Journal Article
%A Zamani, Yousef
%A Ranjbari, Mahin
%T Representations of the general linear group over symmetry classes of polynomials
%J Czechoslovak Mathematical Journal
%D 2018
%P 267-276
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/
%R 10.21136/CMJ.2017.0458-16
%G en
%F 10_21136_CMJ_2017_0458_16
Zamani, Yousef; Ranjbari, Mahin. Representations of the general linear group over symmetry classes of polynomials. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 267-276. doi : 10.21136/CMJ.2017.0458-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0458-16/

Cité par Sources :