Functions of finite fractional variation and their applications to fractional impulsive equations
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 171-195
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak $\sigma $-additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a $\sigma $-additive term---we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.
DOI :
10.21136/CMJ.2017.0455-15
Classification :
26A45, 34A37
Keywords: finite fractional variation; weak $\sigma $-additive fractional; derivative; fractional impulsive equation; Dirac measure; Cauchy formula
Keywords: finite fractional variation; weak $\sigma $-additive fractional; derivative; fractional impulsive equation; Dirac measure; Cauchy formula
@article{10_21136_CMJ_2017_0455_15,
author = {Idczak, Dariusz},
title = {Functions of finite fractional variation and their applications to fractional impulsive equations},
journal = {Czechoslovak Mathematical Journal},
pages = {171--195},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2017},
doi = {10.21136/CMJ.2017.0455-15},
mrnumber = {3633005},
zbl = {06738511},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0455-15/}
}
TY - JOUR AU - Idczak, Dariusz TI - Functions of finite fractional variation and their applications to fractional impulsive equations JO - Czechoslovak Mathematical Journal PY - 2017 SP - 171 EP - 195 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0455-15/ DO - 10.21136/CMJ.2017.0455-15 LA - en ID - 10_21136_CMJ_2017_0455_15 ER -
%0 Journal Article %A Idczak, Dariusz %T Functions of finite fractional variation and their applications to fractional impulsive equations %J Czechoslovak Mathematical Journal %D 2017 %P 171-195 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0455-15/ %R 10.21136/CMJ.2017.0455-15 %G en %F 10_21136_CMJ_2017_0455_15
Idczak, Dariusz. Functions of finite fractional variation and their applications to fractional impulsive equations. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 171-195. doi: 10.21136/CMJ.2017.0455-15
Cité par Sources :