Some results on the annihilator graph of a commutative ring
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 151-169
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by ${\rm AG}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if ${\rm ann}_R(xy) \neq {\rm ann}_R(x)\cup {\rm ann}_R(y)$, where for $z \in R$, ${\rm ann}_R(z) = \lbrace r \in R \colon rz = 0\rbrace $. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs ${\rm AG}(R)$ and ${\rm AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \geq 1$.
Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by ${\rm AG}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if ${\rm ann}_R(xy) \neq {\rm ann}_R(x)\cup {\rm ann}_R(y)$, where for $z \in R$, ${\rm ann}_R(z) = \lbrace r \in R \colon rz = 0\rbrace $. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs ${\rm AG}(R)$ and ${\rm AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \geq 1$.
DOI :
10.21136/CMJ.2017.0436-15
Classification :
05C75, 05C99, 13A99
Keywords: annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions
Keywords: annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions
@article{10_21136_CMJ_2017_0436_15,
author = {Afkhami, Mojgan and Khashyarmanesh, Kazem and Rajabi, Zohreh},
title = {Some results on the annihilator graph of a commutative ring},
journal = {Czechoslovak Mathematical Journal},
pages = {151--169},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0436-15},
mrnumber = {3633004},
zbl = {06738510},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0436-15/}
}
TY - JOUR AU - Afkhami, Mojgan AU - Khashyarmanesh, Kazem AU - Rajabi, Zohreh TI - Some results on the annihilator graph of a commutative ring JO - Czechoslovak Mathematical Journal PY - 2017 SP - 151 EP - 169 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0436-15/ DO - 10.21136/CMJ.2017.0436-15 LA - en ID - 10_21136_CMJ_2017_0436_15 ER -
%0 Journal Article %A Afkhami, Mojgan %A Khashyarmanesh, Kazem %A Rajabi, Zohreh %T Some results on the annihilator graph of a commutative ring %J Czechoslovak Mathematical Journal %D 2017 %P 151-169 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0436-15/ %R 10.21136/CMJ.2017.0436-15 %G en %F 10_21136_CMJ_2017_0436_15
Afkhami, Mojgan; Khashyarmanesh, Kazem; Rajabi, Zohreh. Some results on the annihilator graph of a commutative ring. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 151-169. doi: 10.21136/CMJ.2017.0436-15
Cité par Sources :