Keywords: annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions
@article{10_21136_CMJ_2017_0436_15,
author = {Afkhami, Mojgan and Khashyarmanesh, Kazem and Rajabi, Zohreh},
title = {Some results on the annihilator graph of a commutative ring},
journal = {Czechoslovak Mathematical Journal},
pages = {151--169},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0436-15},
mrnumber = {3633004},
zbl = {06738510},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0436-15/}
}
TY - JOUR AU - Afkhami, Mojgan AU - Khashyarmanesh, Kazem AU - Rajabi, Zohreh TI - Some results on the annihilator graph of a commutative ring JO - Czechoslovak Mathematical Journal PY - 2017 SP - 151 EP - 169 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0436-15/ DO - 10.21136/CMJ.2017.0436-15 LA - en ID - 10_21136_CMJ_2017_0436_15 ER -
%0 Journal Article %A Afkhami, Mojgan %A Khashyarmanesh, Kazem %A Rajabi, Zohreh %T Some results on the annihilator graph of a commutative ring %J Czechoslovak Mathematical Journal %D 2017 %P 151-169 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0436-15/ %R 10.21136/CMJ.2017.0436-15 %G en %F 10_21136_CMJ_2017_0436_15
Afkhami, Mojgan; Khashyarmanesh, Kazem; Rajabi, Zohreh. Some results on the annihilator graph of a commutative ring. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 151-169. doi: 10.21136/CMJ.2017.0436-15
[1] Afkhami, M.: When the comaximal and zero-divisor graphs are ring graphs and outerplanar. Rocky Mt. J. Math. 44 (2014), 1745-1761. | DOI | MR | JFM
[2] Afkhami, M., Barati, Z., Khashyarmanesh, K.: When the unit, unitary and total graphs are ring graphs and outerplanar. Rocky Mt. J. Math. 44 (2014), 705-716. | DOI | MR | JFM
[3] Akbari, S., Maimani, H. R., Yassemi, S.: When a zero-divisor graph is planar or a complete {$r$}-partite graph. J. Algebra 270 (2003), 169-180. | DOI | MR | JFM
[4] D. F. Anderson, M. C. Axtell, J. A. Stickles, Jr.: Zero-divisor graphs in commutative rings. Commutative Algebra. Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. | DOI | MR | JFM
[5] Anderson, D. F., Badawi, A.: On the zero-divisor graph of a ring. Commun. Algebra 36 (2008), 3073-3092. | DOI | MR | JFM
[6] Anderson, D. F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320 (2008), 2706-2719. | DOI | MR | JFM
[7] Anderson, D. F., Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180 (2003), 221-241. | DOI | MR | JFM
[8] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434-447. | DOI | MR | JFM
[9] Anderson, D. D., Naseer, M.: Beck's coloring of a commutative ring. J. Algebra 159 (1993), 500-514. | DOI | MR | JFM
[10] Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S.: Unit graphs associated with rings. Commun. Algebra 38 (2010), 2851-2871. | DOI | MR | JFM
[11] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Series in Mathematics, Addison-Wesley Publishing Company, Reading, London (1969). | MR | JFM
[12] Badawi, A.: On the annihilator graph of a commutative ring. Commun. Algebra 42 (2014), 108-121. | DOI | MR | JFM
[13] Badawi, A.: On the dot product graph of a commutative ring. Commun. Algebra 43 (2015), 43-50. | DOI | MR | JFM
[14] Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, K.: On the associated graphs to a commutative ring. J. Algebra Appl. 11 (2012), 1250037, 17 pages. | DOI | MR | JFM
[15] Beck, I.: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. | DOI | MR | JFM
[16] Belshoff, R., Chapman, J.: Planar zero-divisor graphs. J. Algebra 316 (2007), 471-480. | DOI | MR | JFM
[17] Coté, B., Ewing, C., Huhn, M., Plaut, C. M., Weber, D.: Cut-sets in zero-divisor graphs of finite commutative rings. Commun. Algebra 39 (2011), 2849-2861. | DOI | MR | JFM
[18] Gitler, I., Reyes, E., Villarreal, R. H.: Ring graphs and complete intersection toric ideals. Discrete Math. 310 (2010), 430-441. | DOI | MR | JFM
[19] Kelarev, A.: Graph Algebras and Automata. Pure and Applied Mathematics 257, Marcel Dekker, New York (2003). | MR | JFM
[20] Kelarev, A.: Labelled Cayley graphs and minimal automata. Australas. J. Comb. 30 (2004), 95-101. | MR | JFM
[21] Kelarev, A., Ryan, J., Yearwood, J.: Cayley graphs as classifiers for data mining: The influence of asymmetries. Discrete Math. 309 (2009), 5360-5369. | DOI | MR | JFM
[22] Maimani, H. R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graph of commutative rings. J. Algebra 319 (2008), 1801-1808. | DOI | MR | JFM
[23] West, D. B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (1996). | MR | JFM
Cité par Sources :