Unicyclic graphs with bicyclic inverses
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1133-1143
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses.
A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses.
DOI : 10.21136/CMJ.2017.0429-16
Classification : 05C50, 15A09
Keywords: adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
@article{10_21136_CMJ_2017_0429_16,
     author = {Panda, Swarup Kumar},
     title = {Unicyclic graphs with bicyclic inverses},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1133--1143},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0429-16},
     mrnumber = {3736023},
     zbl = {06819577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/}
}
TY  - JOUR
AU  - Panda, Swarup Kumar
TI  - Unicyclic graphs with bicyclic inverses
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1133
EP  - 1143
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/
DO  - 10.21136/CMJ.2017.0429-16
LA  - en
ID  - 10_21136_CMJ_2017_0429_16
ER  - 
%0 Journal Article
%A Panda, Swarup Kumar
%T Unicyclic graphs with bicyclic inverses
%J Czechoslovak Mathematical Journal
%D 2017
%P 1133-1143
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/
%R 10.21136/CMJ.2017.0429-16
%G en
%F 10_21136_CMJ_2017_0429_16
Panda, Swarup Kumar. Unicyclic graphs with bicyclic inverses. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1133-1143. doi: 10.21136/CMJ.2017.0429-16

[1] Akbari, S., Kirkland, S. J.: On unimodular graphs. Linear Algebra Appl. 421 (2007), 3-15. | DOI | MR | JFM

[2] Barik, S., Neumann, M., Pati, S.: On nonsingular trees and a reciprocal eigenvalue property. Linear Multilinear Algebra 54 (2006), 453-465. | DOI | MR | JFM

[3] Buckley, F., Doty, L. L., Harary, F.: On graphs with signed inverses. Networks 18 (1988), 151-157. | DOI | MR | JFM

[4] Cvetković, D. M., Gutman, I., Simić, S. K.: On self-pseudo-inverse graphs. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz. (1978), 602-633, (1979), 111-117. | MR | JFM

[5] Frucht, R., Harary, F.: On the corona of two graphs. Aequationes Mathematicae 4 (1970), 322-325. | DOI | MR | JFM

[6] Godsil, C. D.: Inverses of trees. Combinatorica 5 (1985), 33-39. | DOI | MR | JFM

[7] Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2 (1953), 143-146. | DOI | MR | JFM

[8] Harary, F., Minc, H.: Which nonnegative matrices are self-inverse?. Math. Mag. 49 (1976), 91-92. | DOI | MR | JFM

[9] Panda, S. K., Pati, S.: On the inverse of a class of bipartite graphs with unique perfect matchings. Electron. J. Linear Algebra 29 (2015), 89-101. | DOI | MR | JFM

[10] Panda, S. K., Pati, S.: On some graphs which possess inverses. Linear Multilinear Algebra 64 (2016), 1445-1459. | DOI | MR | JFM

[11] Pavlíková, S., Krč-Jediný, J.: On the inverse and the dual index of a tree. Linear Multilinear Algebra 28 (1990), 93-109. | DOI | MR | JFM

[12] Simion, R., Cao, D.-S.: Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching. Combinatorica 9 (1989), 85-89. | DOI | MR | JFM

[13] Tifenbach, R. M.: Strongly self-dual graphs. Linear Algebra Appl. 435 (2011), 3151-3167. | DOI | MR | JFM

[14] Tifenbach, R. M., Kirkland, S. J.: Directed intervals and the dual of a graph. Linear Algebra Appl. 431 (2009), 792-807. | DOI | MR | JFM

[15] Yates, K.: Hückel Molecular Orbital Theory. Academic Press (1978). | DOI

Cité par Sources :