Unicyclic graphs with bicyclic inverses
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1133-1143.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses.
DOI : 10.21136/CMJ.2017.0429-16
Classification : 05C50, 15A09
Keywords: adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
@article{10_21136_CMJ_2017_0429_16,
     author = {Panda, Swarup Kumar},
     title = {Unicyclic graphs with bicyclic inverses},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1133--1143},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2017},
     doi = {10.21136/CMJ.2017.0429-16},
     mrnumber = {3736023},
     zbl = {06819577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/}
}
TY  - JOUR
AU  - Panda, Swarup Kumar
TI  - Unicyclic graphs with bicyclic inverses
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1133
EP  - 1143
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/
DO  - 10.21136/CMJ.2017.0429-16
LA  - en
ID  - 10_21136_CMJ_2017_0429_16
ER  - 
%0 Journal Article
%A Panda, Swarup Kumar
%T Unicyclic graphs with bicyclic inverses
%J Czechoslovak Mathematical Journal
%D 2017
%P 1133-1143
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/
%R 10.21136/CMJ.2017.0429-16
%G en
%F 10_21136_CMJ_2017_0429_16
Panda, Swarup Kumar. Unicyclic graphs with bicyclic inverses. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1133-1143. doi : 10.21136/CMJ.2017.0429-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/

Cité par Sources :