Keywords: adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
@article{10_21136_CMJ_2017_0429_16,
author = {Panda, Swarup Kumar},
title = {Unicyclic graphs with bicyclic inverses},
journal = {Czechoslovak Mathematical Journal},
pages = {1133--1143},
year = {2017},
volume = {67},
number = {4},
doi = {10.21136/CMJ.2017.0429-16},
mrnumber = {3736023},
zbl = {06819577},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/}
}
TY - JOUR AU - Panda, Swarup Kumar TI - Unicyclic graphs with bicyclic inverses JO - Czechoslovak Mathematical Journal PY - 2017 SP - 1133 EP - 1143 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/ DO - 10.21136/CMJ.2017.0429-16 LA - en ID - 10_21136_CMJ_2017_0429_16 ER -
Panda, Swarup Kumar. Unicyclic graphs with bicyclic inverses. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1133-1143. doi: 10.21136/CMJ.2017.0429-16
[1] Akbari, S., Kirkland, S. J.: On unimodular graphs. Linear Algebra Appl. 421 (2007), 3-15. | DOI | MR | JFM
[2] Barik, S., Neumann, M., Pati, S.: On nonsingular trees and a reciprocal eigenvalue property. Linear Multilinear Algebra 54 (2006), 453-465. | DOI | MR | JFM
[3] Buckley, F., Doty, L. L., Harary, F.: On graphs with signed inverses. Networks 18 (1988), 151-157. | DOI | MR | JFM
[4] Cvetković, D. M., Gutman, I., Simić, S. K.: On self-pseudo-inverse graphs. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz. (1978), 602-633, (1979), 111-117. | MR | JFM
[5] Frucht, R., Harary, F.: On the corona of two graphs. Aequationes Mathematicae 4 (1970), 322-325. | DOI | MR | JFM
[6] Godsil, C. D.: Inverses of trees. Combinatorica 5 (1985), 33-39. | DOI | MR | JFM
[7] Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2 (1953), 143-146. | DOI | MR | JFM
[8] Harary, F., Minc, H.: Which nonnegative matrices are self-inverse?. Math. Mag. 49 (1976), 91-92. | DOI | MR | JFM
[9] Panda, S. K., Pati, S.: On the inverse of a class of bipartite graphs with unique perfect matchings. Electron. J. Linear Algebra 29 (2015), 89-101. | DOI | MR | JFM
[10] Panda, S. K., Pati, S.: On some graphs which possess inverses. Linear Multilinear Algebra 64 (2016), 1445-1459. | DOI | MR | JFM
[11] Pavlíková, S., Krč-Jediný, J.: On the inverse and the dual index of a tree. Linear Multilinear Algebra 28 (1990), 93-109. | DOI | MR | JFM
[12] Simion, R., Cao, D.-S.: Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching. Combinatorica 9 (1989), 85-89. | DOI | MR | JFM
[13] Tifenbach, R. M.: Strongly self-dual graphs. Linear Algebra Appl. 435 (2011), 3151-3167. | DOI | MR | JFM
[14] Tifenbach, R. M., Kirkland, S. J.: Directed intervals and the dual of a graph. Linear Algebra Appl. 431 (2009), 792-807. | DOI | MR | JFM
[15] Yates, K.: Hückel Molecular Orbital Theory. Academic Press (1978). | DOI
Cité par Sources :