Unicyclic graphs with bicyclic inverses
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1133-1143
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses.
DOI :
10.21136/CMJ.2017.0429-16
Classification :
05C50, 15A09
Keywords: adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
Keywords: adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
@article{10_21136_CMJ_2017_0429_16,
author = {Panda, Swarup Kumar},
title = {Unicyclic graphs with bicyclic inverses},
journal = {Czechoslovak Mathematical Journal},
pages = {1133--1143},
publisher = {mathdoc},
volume = {67},
number = {4},
year = {2017},
doi = {10.21136/CMJ.2017.0429-16},
mrnumber = {3736023},
zbl = {06819577},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/}
}
TY - JOUR AU - Panda, Swarup Kumar TI - Unicyclic graphs with bicyclic inverses JO - Czechoslovak Mathematical Journal PY - 2017 SP - 1133 EP - 1143 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0429-16/ DO - 10.21136/CMJ.2017.0429-16 LA - en ID - 10_21136_CMJ_2017_0429_16 ER -
Panda, Swarup Kumar. Unicyclic graphs with bicyclic inverses. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1133-1143. doi: 10.21136/CMJ.2017.0429-16
Cité par Sources :