Embeddings between weighted Copson and Cesàro function spaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1105-1132
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, characterizations of the embeddings between weighted Copson function spaces ${\rm Cop}_{p_1,q_1}(u_1,v_1)$ and weighted Cesàro function spaces ${\rm Ces}_{p_2,q_2}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality $$ \def \frc #1#2{{#1/#2}} \begin{aligned}d \biggl ( \int _0^{\infty } \biggl ( \int _0^t f(\tau )^{p_2}v_2(\tau ) {\rm d}\tau \biggr )^{\frc {q_2}{p_2}} u_2(t) {\rm d} t\biggr )^{\frc {1}{q_2}}\\ \le c \biggl ( \int _0^{\infty } \biggl ( \int _t^{\infty } f(\tau )^{p_1} v_1(\tau ) {\rm d}\tau \biggr )^{\frc {q_1}{p_1}} u_1(t) {\rm d} t\biggr )^{\frc {1}{q_1}}, \end{aligned}d $$ where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
DOI :
10.21136/CMJ.2017.0424-16
Classification :
26D10, 46E30
Keywords: Cesàro and Copson function spaces; embedding; iterated Hardy inequalities
Keywords: Cesàro and Copson function spaces; embedding; iterated Hardy inequalities
@article{10_21136_CMJ_2017_0424_16,
author = {Gogatishvili, Amiran and Mustafayev, Rza and \"Unver, Tu\u{g}\c{c}e},
title = {Embeddings between weighted {Copson} and {Ces\`aro} function spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {1105--1132},
publisher = {mathdoc},
volume = {67},
number = {4},
year = {2017},
doi = {10.21136/CMJ.2017.0424-16},
mrnumber = {3736022},
zbl = {06819576},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/}
}
TY - JOUR AU - Gogatishvili, Amiran AU - Mustafayev, Rza AU - Ünver, Tuğçe TI - Embeddings between weighted Copson and Cesàro function spaces JO - Czechoslovak Mathematical Journal PY - 2017 SP - 1105 EP - 1132 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/ DO - 10.21136/CMJ.2017.0424-16 LA - en ID - 10_21136_CMJ_2017_0424_16 ER -
%0 Journal Article %A Gogatishvili, Amiran %A Mustafayev, Rza %A Ünver, Tuğçe %T Embeddings between weighted Copson and Cesàro function spaces %J Czechoslovak Mathematical Journal %D 2017 %P 1105-1132 %V 67 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/ %R 10.21136/CMJ.2017.0424-16 %G en %F 10_21136_CMJ_2017_0424_16
Gogatishvili, Amiran; Mustafayev, Rza; Ünver, Tuğçe. Embeddings between weighted Copson and Cesàro function spaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1105-1132. doi: 10.21136/CMJ.2017.0424-16
Cité par Sources :