Embeddings between weighted Copson and Cesàro function spaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1105-1132.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, characterizations of the embeddings between weighted Copson function spaces ${\rm Cop}_{p_1,q_1}(u_1,v_1)$ and weighted Cesàro function spaces ${\rm Ces}_{p_2,q_2}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality $$ \def \frc #1#2{{#1/#2}} \begin{aligned}d \biggl ( \int _0^{\infty } \biggl ( \int _0^t f(\tau )^{p_2}v_2(\tau ) {\rm d}\tau \biggr )^{\frc {q_2}{p_2}} u_2(t) {\rm d} t\biggr )^{\frc {1}{q_2}}\\ \le c \biggl ( \int _0^{\infty } \biggl ( \int _t^{\infty } f(\tau )^{p_1} v_1(\tau ) {\rm d}\tau \biggr )^{\frc {q_1}{p_1}} u_1(t) {\rm d} t\biggr )^{\frc {1}{q_1}}, \end{aligned}d $$ where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
DOI : 10.21136/CMJ.2017.0424-16
Classification : 26D10, 46E30
Keywords: Cesàro and Copson function spaces; embedding; iterated Hardy inequalities
@article{10_21136_CMJ_2017_0424_16,
     author = {Gogatishvili, Amiran and Mustafayev, Rza and \"Unver, Tu\u{g}\c{c}e},
     title = {Embeddings between weighted {Copson} and {Ces\`aro} function spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1105--1132},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2017},
     doi = {10.21136/CMJ.2017.0424-16},
     mrnumber = {3736022},
     zbl = {06819576},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/}
}
TY  - JOUR
AU  - Gogatishvili, Amiran
AU  - Mustafayev, Rza
AU  - Ünver, Tuğçe
TI  - Embeddings between weighted Copson and Cesàro function spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1105
EP  - 1132
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/
DO  - 10.21136/CMJ.2017.0424-16
LA  - en
ID  - 10_21136_CMJ_2017_0424_16
ER  - 
%0 Journal Article
%A Gogatishvili, Amiran
%A Mustafayev, Rza
%A Ünver, Tuğçe
%T Embeddings between weighted Copson and Cesàro function spaces
%J Czechoslovak Mathematical Journal
%D 2017
%P 1105-1132
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/
%R 10.21136/CMJ.2017.0424-16
%G en
%F 10_21136_CMJ_2017_0424_16
Gogatishvili, Amiran; Mustafayev, Rza; Ünver, Tuğçe. Embeddings between weighted Copson and Cesàro function spaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1105-1132. doi : 10.21136/CMJ.2017.0424-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/

Cité par Sources :