Embeddings between weighted Copson and Cesàro function spaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1105-1132
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, characterizations of the embeddings between weighted Copson function spaces ${\rm Cop}_{p_1,q_1}(u_1,v_1)$ and weighted Cesàro function spaces ${\rm Ces}_{p_2,q_2}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality $$ \def \frc #1#2{{#1/#2}} \begin{aligned}d \biggl ( \int _0^{\infty } \biggl ( \int _0^t f(\tau )^{p_2}v_2(\tau ) {\rm d}\tau \biggr )^{\frc {q_2}{p_2}} u_2(t) {\rm d} t\biggr )^{\frc {1}{q_2}}\\ \le c \biggl ( \int _0^{\infty } \biggl ( \int _t^{\infty } f(\tau )^{p_1} v_1(\tau ) {\rm d}\tau \biggr )^{\frc {q_1}{p_1}} u_1(t) {\rm d} t\biggr )^{\frc {1}{q_1}}, \end{aligned}d $$ where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
In this paper, characterizations of the embeddings between weighted Copson function spaces ${\rm Cop}_{p_1,q_1}(u_1,v_1)$ and weighted Cesàro function spaces ${\rm Ces}_{p_2,q_2}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality $$ \def \frc #1#2{{#1/#2}} \begin{aligned}d \biggl ( \int _0^{\infty } \biggl ( \int _0^t f(\tau )^{p_2}v_2(\tau ) {\rm d}\tau \biggr )^{\frc {q_2}{p_2}} u_2(t) {\rm d} t\biggr )^{\frc {1}{q_2}}\\ \le c \biggl ( \int _0^{\infty } \biggl ( \int _t^{\infty } f(\tau )^{p_1} v_1(\tau ) {\rm d}\tau \biggr )^{\frc {q_1}{p_1}} u_1(t) {\rm d} t\biggr )^{\frc {1}{q_1}}, \end{aligned}d $$ where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
DOI : 10.21136/CMJ.2017.0424-16
Classification : 26D10, 46E30
Keywords: Cesàro and Copson function spaces; embedding; iterated Hardy inequalities
@article{10_21136_CMJ_2017_0424_16,
     author = {Gogatishvili, Amiran and Mustafayev, Rza and \"Unver, Tu\u{g}\c{c}e},
     title = {Embeddings between weighted {Copson} and {Ces\`aro} function spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1105--1132},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0424-16},
     mrnumber = {3736022},
     zbl = {06819576},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/}
}
TY  - JOUR
AU  - Gogatishvili, Amiran
AU  - Mustafayev, Rza
AU  - Ünver, Tuğçe
TI  - Embeddings between weighted Copson and Cesàro function spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1105
EP  - 1132
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/
DO  - 10.21136/CMJ.2017.0424-16
LA  - en
ID  - 10_21136_CMJ_2017_0424_16
ER  - 
%0 Journal Article
%A Gogatishvili, Amiran
%A Mustafayev, Rza
%A Ünver, Tuğçe
%T Embeddings between weighted Copson and Cesàro function spaces
%J Czechoslovak Mathematical Journal
%D 2017
%P 1105-1132
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0424-16/
%R 10.21136/CMJ.2017.0424-16
%G en
%F 10_21136_CMJ_2017_0424_16
Gogatishvili, Amiran; Mustafayev, Rza; Ünver, Tuğçe. Embeddings between weighted Copson and Cesàro function spaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1105-1132. doi: 10.21136/CMJ.2017.0424-16

[1] R. Askey, R. P. Boas, Jr.: Some integrability theorems for power series with positive coefficients. Math. Essays Dedicated to A. J. Macintyre Ohio Univ. Press, Athens (1970), 23-32. | MR | JFM

[2] Astashkin, S. V.: On the geometric properties of Cesàro spaces. Sb. Math. 203 (2012), 514-533. English. Russian original translation from Mat. Sb. 203 2012 61-80. | DOI | MR | JFM

[3] Astashkin, S. V., Maligranda, L.: Cesàro function spaces fail the fixed point property. Proc. Am. Math. Soc. 136 (2008), 4289-4294. | DOI | MR | JFM

[4] Astashkin, S. V., Maligranda, L.: Structure of Cesàro function spaces. Indag. Math., New Ser. 20 (2009), 329-379. | DOI | MR | JFM

[5] Astashkin, S. V., Maligranda, L.: Rademacher functions in Cesàro type spaces. Stud. Math. 198 (2010), 235-247. | DOI | MR | JFM

[6] Astashkin, S. V., Maligranda, L.: Geometry of Cesàro function spaces. Funct. Anal. Appl. 45 (2011), 64-68. English. Russian original translation from Funkts. Anal. Prilozh. 45 2011 79-83. | DOI | MR | JFM

[7] Astashkin, S. V., Maligranda, L.: A short proof of some recent results related to Cesàro function spaces. Indag. Math., New Ser. 24 (2013), 589-592. | DOI | MR | JFM

[8] Astashkin, S. V., Maligranda, L.: Interpolation of Cesàro sequence and function spaces. Stud. Math. 215 (2013), 39-69. | DOI | MR | JFM

[9] Astashkin, S. V., Maligranda, L.: Interpolation of Cesàro and Copson spaces. Proc. Int. Symp. on Banach and Function Spaces IV (ISBFS 2012), Kitakyushu 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 123-133. | MR | JFM

[10] Astashkin, S. V., Maligranda, L.: Structure of Cesàro function spaces: a survey. Function Spaces X H. Hudzik et al. Proc. Int. Conf., Poznań 2012, Polish Academy of Sciences, Institute of Mathematics, Warszawa; Banach Center Publications 102 (2014), 13-40. | DOI | MR | JFM

[11] Belinskii, E. S., Liflyand, E. R., Trigub, R. M.: The Banach algebra $A^*$ and its properties. J. Fourier Anal. Appl. 3 (1997), 103-129. | DOI | MR | JFM

[12] Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120 (1996), 130 pages. | DOI | MR | JFM

[13] R. P. Boas, Jr.: Integrability Theorems for Trigonometric Transforms. Ergebnisse der Mathematik und ihrer Grenzgebiete 38, Springer, New York (1967). | DOI | MR | JFM

[14] R. P. Boas, Jr.: Some integral inequalities related to Hardy's inequality. J. Anal. Math. 23 (1970), 53-63. | DOI | MR | JFM

[15] Carro, M., Gogatishvili, A., Martín, J., Pick, L.: Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces. J. Oper. Theory 59 (2008), 309-332. | MR | JFM

[16] Cui, S. Chen,Y., Hudzik, H., Sims, B.: Geometric properties related to fixed point theory in some Banach function lattices. Handbook of Metric Fixed Point Theory W. Kirk et al. Kluwer Academic Publishers, Dordrecht (2001), 339-389. | DOI | MR | JFM

[17] Cui, Y., Hudzik, H.: Some geometric properties related to fixed point theory in Cesàro spaces. Collect. Math. 50 (1999), 277-288. | MR | JFM

[18] Cui, Y., Hudzik, H.: Packing constant for Cesaro sequence spaces. Nonlinear Anal., Theory Methods Appl. 47 (2001), 2695-2702. | DOI | MR | JFM

[19] Cui, Y., Hudzik, H., Li, Y.: On the García-Falset coefficient in some Banach sequence spaces. Function Spaces. Proc. Int. Conf. (Poznań 1998) H. Hudzik et al. Lect. Notes Pure Appl. Math. 213, Marcel Dekker, New York (2000), 141-148. | MR | JFM

[20] Cui, Y., Meng, C.-H., Płuciennik, R.: Banach-Saks property and property $(\beta)$ in Cesàro sequence spaces. Southeast Asian Bull. Math. 24 (2000), 201-210. | DOI | MR | JFM

[21] Cui, Y., Płuciennik, R.: Local uniform nonsquareness in Cesàro sequence spaces. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 47-58. | MR | JFM

[22] Evans, W. D., Gogatishvili, A., Opic, B.: The reverse Hardy inequality with measures. Math. Inequal. Appl. 11 (2008), 43-74. | DOI | MR | JFM

[23] Gilbert, J. E.: Interpolation between weighted $L^{p}$-spaces. Ark. Mat. 10 (1972), 235-249. | DOI | MR | JFM

[24] Gogatishvili, A., Mustafayev, R. Ch.: Iterated Hardy-type inequalities involving suprema. Math. Inequal. Appl. 20 (2017), 901-927. | MR

[25] Gogatishvili, A., Mustafayev, R. Ch.: Weighted iterated Hardy-type inequalities. Math. Inequal. Appl. 20 (2017), 683-728. | DOI | MR

[26] Gogatishvili, A., Mustafayev, R. Ch., Persson, L.-E.: Some new iterated Hardy-type inequalities. J. Funct. Spaces Appl. 2012 (2012), Article ID 734194, 30 pages. | DOI | MR | JFM

[27] Gogatishvili, A., Opic, B., Pick, L.: Weighted inequalities for Hardy-type operators involving suprema. Collect. Math. 57 (2006), 227-255. | MR | JFM

[28] Gogatishvili, A., Persson, L.-E., Stepanov, V. D., Wall, P.: Some scales of equivalent conditions to characterize the Stieltjes inequality: the case $q< p$. Math. Nachr. 287 (2014), 242-253. | DOI | MR | JFM

[29] Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy's Inequality. Lecture Notes in Mathematics 1679, Springer, Berlin (1998). | DOI | MR | JFM

[30] Hassard, B. D., Hussein, D. A.: On Cesàro function spaces. Tamkang J. Math. 4 (1973), 19-25. | MR | JFM

[31] Jagers, A. A.: A note on Cesàro sequence spaces. Nieuw Arch. Wiskd., III. Ser. 22 (1974), 113-124. | MR | JFM

[32] Johnson, R.: Lipschitz spaces, Littlewood-Paley spaces, and convoluteurs. Proc. Lond. Math. Soc., III. Ser. 29 (1974), 127-141. | DOI | MR | JFM

[33] Kamińska, A., Kubiak, D.: On the dual of Cesàro function space. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2760-2773. | DOI | MR | JFM

[34] Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality. About Its History and Some Related Results. Vydavatelský Servis, Plzeň (2007). | MR | JFM

[35] Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific Publishing, Singapore (2003). | DOI | MR | JFM

[36] Mustafayev, R., Ünver, T.: Reverse Hardy-type inequalities for supremal operators with measures. Math. Inequal. Appl. 18 (2015), 1295-1311. | DOI | MR | JFM

[37] Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, New York (1990). | MR | JFM

[38] Programma van Jaarlijkse Prijsvragen (Annual Problem Section). Nieuw Arch. Wiskd. 16 (1968), 47-51.

[39] Shiue, J.-S.: A note on Cesàro function space. Tamkang J. Math. 1 (1970), 91-95. | MR | JFM

[40] Sy, P. W., Zhang, W. Y., Lee, P. Y.: The dual of Cesàro function spaces. Glas. Mat., III Ser. 22(42) (1987), 103-112. | MR | JFM

Cité par Sources :