Keywords: regularity criterion; Navier-Stokes equation
@article{10_21136_CMJ_2017_0419_16,
author = {Zhang, Zujin},
title = {Serrin-type regularity criterion for the {Navier-Stokes} equations involving one velocity and one vorticity component},
journal = {Czechoslovak Mathematical Journal},
pages = {219--225},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2017.0419-16},
mrnumber = {3783594},
zbl = {06861576},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0419-16/}
}
TY - JOUR AU - Zhang, Zujin TI - Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component JO - Czechoslovak Mathematical Journal PY - 2018 SP - 219 EP - 225 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0419-16/ DO - 10.21136/CMJ.2017.0419-16 LA - en ID - 10_21136_CMJ_2017_0419_16 ER -
%0 Journal Article %A Zhang, Zujin %T Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component %J Czechoslovak Mathematical Journal %D 2018 %P 219-225 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0419-16/ %R 10.21136/CMJ.2017.0419-16 %G en %F 10_21136_CMJ_2017_0419_16
Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 219-225. doi: 10.21136/CMJ.2017.0419-16
[1] Veiga, H. Beirão da: A new regularity class for the Navier-Stokes equations in ${\mathbb R}^n$. Chin. Ann. Math. Ser. B 16 (1995), 407-412. | MR | JFM
[2] Cao, C., Titi, E. S.: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57 (2008), 2643-2661. | DOI | MR | JFM
[3] Cao, C., Titi, E. S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202 (2011), 919-932. | DOI | MR | JFM
[4] Escauriaza, L., Serëgin, G. A., Shverak, V.: $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58 (2003), 211-250. English. Russian original translation from Usp. Mat. Nauk 58 2003 3-44. | DOI | MR | JFM
[5] Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1951), 213-231 German. | DOI | MR | JFM
[6] Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations. Nonlinearity 19 (2006), 453-469. | DOI | MR | JFM
[7] Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48 (2007), 065203, 10 pages. | DOI | MR | JFM
[8] Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05. | DOI | MR
[9] Ohyama, T.: Interior regularity of weak solutions of the time-dependent Navier-Stokes equation. Proc. Japan Acad. 36 (1960), 273-277. | DOI | MR | JFM
[10] Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math., Praha 49 (2004), 483-493. | DOI | MR | JFM
[11] Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations. J. Math. Fluid Mech. 13 (2011), 341-353. | DOI | MR | JFM
[12] Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl., IV. Ser. 48 (1959), 173-182 Italian. | DOI | MR | JFM
[13] Serrin, J.: The initial value problem for the Navier-Stokes equations. Nonlinear Problems Proc. Symp., Madison, 1962, University of Wisconsin Press, Madison, Wisconsin (1963), 69-98. | MR | JFM
[14] Skalák, Z.: A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. J. Math. Phys. 55 (2014), 121506, 6 pages. | DOI | MR | JFM
[15] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). | DOI | MR | JFM
[16] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. American Mathematical Society, Chelsea Publishing, Providence (2001). | DOI | MR | JFM
[17] Zhang, Z.: An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component. Z. Angew. Math. Phys. 66 (2015), 1707-1715. | DOI | MR | JFM
[18] Zhang, Z., Yao, Z.-A., Lu, M., Ni, L.: Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations. J. Math. Phys. 52 (2011), 053103, 7 pages. | DOI | MR | JFM
[19] Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50 (2009), 123514, 11 pages. | DOI | MR | JFM
[20] Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity 23 (2010), 1097-1107. | DOI | MR | JFM
Cité par Sources :