Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 219-225 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of $u_3$ and $\omega _3$, which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).
We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of $u_3$ and $\omega _3$, which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).
DOI : 10.21136/CMJ.2017.0419-16
Classification : 35B65, 35Q30, 76D03
Keywords: regularity criterion; Navier-Stokes equation
@article{10_21136_CMJ_2017_0419_16,
     author = {Zhang, Zujin},
     title = {Serrin-type regularity criterion for the {Navier-Stokes} equations involving one velocity and one vorticity component},
     journal = {Czechoslovak Mathematical Journal},
     pages = {219--225},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2017.0419-16},
     mrnumber = {3783594},
     zbl = {06861576},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0419-16/}
}
TY  - JOUR
AU  - Zhang, Zujin
TI  - Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 219
EP  - 225
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0419-16/
DO  - 10.21136/CMJ.2017.0419-16
LA  - en
ID  - 10_21136_CMJ_2017_0419_16
ER  - 
%0 Journal Article
%A Zhang, Zujin
%T Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component
%J Czechoslovak Mathematical Journal
%D 2018
%P 219-225
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0419-16/
%R 10.21136/CMJ.2017.0419-16
%G en
%F 10_21136_CMJ_2017_0419_16
Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 219-225. doi: 10.21136/CMJ.2017.0419-16

[1] Veiga, H. Beirão da: A new regularity class for the Navier-Stokes equations in ${\mathbb R}^n$. Chin. Ann. Math. Ser. B 16 (1995), 407-412. | MR | JFM

[2] Cao, C., Titi, E. S.: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57 (2008), 2643-2661. | DOI | MR | JFM

[3] Cao, C., Titi, E. S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202 (2011), 919-932. | DOI | MR | JFM

[4] Escauriaza, L., Serëgin, G. A., Shverak, V.: $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58 (2003), 211-250. English. Russian original translation from Usp. Mat. Nauk 58 2003 3-44. | DOI | MR | JFM

[5] Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1951), 213-231 German. | DOI | MR | JFM

[6] Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations. Nonlinearity 19 (2006), 453-469. | DOI | MR | JFM

[7] Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48 (2007), 065203, 10 pages. | DOI | MR | JFM

[8] Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05. | DOI | MR

[9] Ohyama, T.: Interior regularity of weak solutions of the time-dependent Navier-Stokes equation. Proc. Japan Acad. 36 (1960), 273-277. | DOI | MR | JFM

[10] Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math., Praha 49 (2004), 483-493. | DOI | MR | JFM

[11] Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations. J. Math. Fluid Mech. 13 (2011), 341-353. | DOI | MR | JFM

[12] Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl., IV. Ser. 48 (1959), 173-182 Italian. | DOI | MR | JFM

[13] Serrin, J.: The initial value problem for the Navier-Stokes equations. Nonlinear Problems Proc. Symp., Madison, 1962, University of Wisconsin Press, Madison, Wisconsin (1963), 69-98. | MR | JFM

[14] Skalák, Z.: A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. J. Math. Phys. 55 (2014), 121506, 6 pages. | DOI | MR | JFM

[15] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). | DOI | MR | JFM

[16] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. American Mathematical Society, Chelsea Publishing, Providence (2001). | DOI | MR | JFM

[17] Zhang, Z.: An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component. Z. Angew. Math. Phys. 66 (2015), 1707-1715. | DOI | MR | JFM

[18] Zhang, Z., Yao, Z.-A., Lu, M., Ni, L.: Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations. J. Math. Phys. 52 (2011), 053103, 7 pages. | DOI | MR | JFM

[19] Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50 (2009), 123514, 11 pages. | DOI | MR | JFM

[20] Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity 23 (2010), 1097-1107. | DOI | MR | JFM

Cité par Sources :