Maps on upper triangular matrices preserving zero products
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1095-1103
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider $\mathcal T_n(F)$---the ring of all $n\times n$ upper triangular matrices defined over some field $F$. A map $\phi $ is called a zero product preserver on ${\mathcal T}_n(F)$ in both directions if for all $x,y\in {\mathcal T}_n(F)$ the condition $xy=0$ is satisfied if and only if $\phi (x)\phi (y)=0$. In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map $\phi $ may act in any bijective way, whereas for the zero divisors and zero matrix one can write $\phi $ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix $x$ into a matrix $x'$ such that $\{y\in \mathcal T_n(F)\colon xy=0\}=\{y\in \mathcal T_n(F)\colon x'y=0\}$, $\{y\in \mathcal T_n(F)\colon yx=0\}=\{y\in \mathcal T_n(F)\colon yx'=0\}$.
Consider $\mathcal T_n(F)$---the ring of all $n\times n$ upper triangular matrices defined over some field $F$. A map $\phi $ is called a zero product preserver on ${\mathcal T}_n(F)$ in both directions if for all $x,y\in {\mathcal T}_n(F)$ the condition $xy=0$ is satisfied if and only if $\phi (x)\phi (y)=0$. In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map $\phi $ may act in any bijective way, whereas for the zero divisors and zero matrix one can write $\phi $ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix $x$ into a matrix $x'$ such that $\{y\in \mathcal T_n(F)\colon xy=0\}=\{y\in \mathcal T_n(F)\colon x'y=0\}$, $\{y\in \mathcal T_n(F)\colon yx=0\}=\{y\in \mathcal T_n(F)\colon yx'=0\}$.
DOI : 10.21136/CMJ.2017.0416-16
Classification : 15A99, 16U99
Keywords: zero product preserver; upper triangular matrix
@article{10_21136_CMJ_2017_0416_16,
     author = {S{\l}owik, Roksana},
     title = {Maps on upper triangular matrices preserving zero products},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1095--1103},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0416-16},
     mrnumber = {3736021},
     zbl = {06819575},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0416-16/}
}
TY  - JOUR
AU  - Słowik, Roksana
TI  - Maps on upper triangular matrices preserving zero products
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1095
EP  - 1103
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0416-16/
DO  - 10.21136/CMJ.2017.0416-16
LA  - en
ID  - 10_21136_CMJ_2017_0416_16
ER  - 
%0 Journal Article
%A Słowik, Roksana
%T Maps on upper triangular matrices preserving zero products
%J Czechoslovak Mathematical Journal
%D 2017
%P 1095-1103
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0416-16/
%R 10.21136/CMJ.2017.0416-16
%G en
%F 10_21136_CMJ_2017_0416_16
Słowik, Roksana. Maps on upper triangular matrices preserving zero products. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1095-1103. doi: 10.21136/CMJ.2017.0416-16

[1] Alaminos, J., Brešar, M., Extremera, J., Villena, A. R.: Maps preserving zero products. Studia Math. 193 (2009), 131-159. | DOI | MR | JFM

[2] Beck, I.: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. | DOI | MR | JFM

[3] Botta, P., Pierce, S., Watkins, W.: Linear transformations that preserve the nilpotent matrices. Pac. J. Math. 104 (1983), 39-46. | DOI | MR | JFM

[4] Božić, I., Petrović, Z.: Zero-divisor graphs of matrices over commutative rings. Commun. Algebra 37 (2009), 1186-1192. | DOI | MR | JFM

[5] Burgos, M., Sánchez-Ortega, J.: On mappings preserving zero products. Linear Multilinear Algebra 61 (2013), 323-335. | DOI | MR | JFM

[6] Chebotar, M. A., Ke, W.-F., Lee, P.-H.: On maps preserving square-zero matrices. J. Algebra 289 (2005), 421-445. | DOI | MR | JFM

[7] Chebotar, M. A., Ke, W.-F., Lee, P.-H., Wong, N.-C.: Mappings preserving zero products. Stud. Math. 155 (2003), 77-94. | DOI | MR | JFM

[8] Fenstermacher, T., Gegner, E.: Zero-divisor graphs of $2\times 2$ upper triangular matrix rings over $\Bbb Z_n$. Missouri J. Math. Sci. 26 (2014), 151-167. | DOI | MR | JFM

[9] Hou, J., Zhao, L.: Zero-product preserving additive maps on symmetric operator spaces and self-adjoint operator spaces. Linear Algebra Appl. 399 (2005), 235-244. | DOI | MR | JFM

[10] Li, B.: Zero-divisor graph of triangular matrix rings over commutative rings. Int. J. Algebra 5 (2011), 255-260. | MR | JFM

[11] Li, A., Tucci, R. P.: Zero divisor graphs of upper triangular matrix rings. Comm. Algebra 41 (2013), 4622-4636. | DOI | MR | JFM

[12] Šemrl, P.: Linear mappings preserving square-zero matrices. Bull. Aust. Math. Soc. 48 (1993), 365-370. | DOI | MR | JFM

[13] Słowik, R.: Maps on infinite triangular matrices preserving idempotents. Linear Multilinear Algebra 62 (2014), 938-964. | DOI | MR | JFM

[14] Wang, L.: A note on automorphisms of the zero-divisor graph of upper triangular matrices. Linear Algebra Appl. 465 (2015), 214-220. | DOI | MR | JFM

[15] Wong, W. J.: Maps on simple algebras preserving zero products I. The associative case. Pac. J. Math. 89 (1980), 229-247. | DOI | MR | JFM

[16] Wong, D., Ma, X., Zhou, J.: The group of automorphisms of a zero-divisor graph based on rank one upper triangular matrices. Linear Algebra Appl. 460 (2014), 242-258. | DOI | MR | JFM

Cité par Sources :