A higher rank Selberg sieve and applications
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 169-193.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.
DOI : 10.21136/CMJ.2017.0410-16
Classification : 11N05, 11N35, 11N36
Keywords: Selberg sieve; bounded gaps; prime $k$-tuples
@article{10_21136_CMJ_2017_0410_16,
     author = {Vatwani, Akshaa},
     title = {A higher rank {Selberg} sieve and applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {169--193},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2018},
     doi = {10.21136/CMJ.2017.0410-16},
     mrnumber = {3783592},
     zbl = {06861574},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0410-16/}
}
TY  - JOUR
AU  - Vatwani, Akshaa
TI  - A higher rank Selberg sieve and applications
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 169
EP  - 193
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0410-16/
DO  - 10.21136/CMJ.2017.0410-16
LA  - en
ID  - 10_21136_CMJ_2017_0410_16
ER  - 
%0 Journal Article
%A Vatwani, Akshaa
%T A higher rank Selberg sieve and applications
%J Czechoslovak Mathematical Journal
%D 2018
%P 169-193
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0410-16/
%R 10.21136/CMJ.2017.0410-16
%G en
%F 10_21136_CMJ_2017_0410_16
Vatwani, Akshaa. A higher rank Selberg sieve and applications. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 169-193. doi : 10.21136/CMJ.2017.0410-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0410-16/

Cité par Sources :