A higher rank Selberg sieve and applications
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 169-193
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.
DOI :
10.21136/CMJ.2017.0410-16
Classification :
11N05, 11N35, 11N36
Keywords: Selberg sieve; bounded gaps; prime $k$-tuples
Keywords: Selberg sieve; bounded gaps; prime $k$-tuples
@article{10_21136_CMJ_2017_0410_16,
author = {Vatwani, Akshaa},
title = {A higher rank {Selberg} sieve and applications},
journal = {Czechoslovak Mathematical Journal},
pages = {169--193},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2018},
doi = {10.21136/CMJ.2017.0410-16},
mrnumber = {3783592},
zbl = {06861574},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0410-16/}
}
TY - JOUR AU - Vatwani, Akshaa TI - A higher rank Selberg sieve and applications JO - Czechoslovak Mathematical Journal PY - 2018 SP - 169 EP - 193 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0410-16/ DO - 10.21136/CMJ.2017.0410-16 LA - en ID - 10_21136_CMJ_2017_0410_16 ER -
Vatwani, Akshaa. A higher rank Selberg sieve and applications. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 169-193. doi: 10.21136/CMJ.2017.0410-16
Cité par Sources :