Keywords: Selberg sieve; bounded gaps; prime $k$-tuples
@article{10_21136_CMJ_2017_0410_16,
author = {Vatwani, Akshaa},
title = {A higher rank {Selberg} sieve and applications},
journal = {Czechoslovak Mathematical Journal},
pages = {169--193},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2017.0410-16},
mrnumber = {3783592},
zbl = {06861574},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0410-16/}
}
TY - JOUR AU - Vatwani, Akshaa TI - A higher rank Selberg sieve and applications JO - Czechoslovak Mathematical Journal PY - 2018 SP - 169 EP - 193 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0410-16/ DO - 10.21136/CMJ.2017.0410-16 LA - en ID - 10_21136_CMJ_2017_0410_16 ER -
Vatwani, Akshaa. A higher rank Selberg sieve and applications. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 169-193. doi: 10.21136/CMJ.2017.0410-16
[1] Friedlander, J., Iwaniec, H.: Opera de Cribro. Colloquium Publications, American Mathematical Society 57, Providence (2010). | DOI | MR | JFM
[2] Halberstam, H., Richert, H.-E.: Sieve Methods. London Mathematical Society Monographs 4, Academic Press, London (1974). | MR | JFM
[3] Hooley, C.: On Artin's conjecture. J. Reine Angew. Math. 225 (1967), 209-220. | DOI | MR | JFM
[4] Lagarias, J. C., Odlyzko, A. M.: Effective versions of the Chebotarev density theorem. Algebraic Number Fields: $L$-Functions and Galois Properties Proc. Sympos., Univ. Durham, Durham, 1975, Academic Press, London (1977), 409-464. | MR | JFM
[5] Maynard, J.: Small gaps between primes. Ann. Math. (2) 181 (2015), 383-413. | DOI | MR | JFM
[6] Murty, M. R.: Artin's Conjecture and Non-abelian Sieves. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1980). | MR
[7] Murty, M. R., Murty, V. K.: A variant of the Bombieri-Vinogradov theorem. Number Theory Proc. Conf., Montreal, 1985, CMS Conf. Proc. 7 (1987), 243-272. | MR | JFM
[8] Pollack, P.: Bounded gaps between primes with a given primitive root. Algebra Number Theory 8 (2014), 1769-1786. | DOI | MR | JFM
[9] Polymath, D. H. J.: Variants of the Selberg sieve, and bounded intervals containing many primes. Res. Math. Sci. (electronic only) 1 (2014), Paper No. 12, 83 pages erratum ibid. (electronic only) 2 2015 Paper No. 15, 2 pages. | DOI | MR | JFM
[10] Selberg, A.: Sieve methods. 1969 Number Theory Institute Proc. Sympos. Pure Math. 20, Stony Brook, 1969, Amer. Mat. Soc., Providence (1971), 311-351. | DOI | MR | JFM
[11] Selberg, A.: Collected Papers. Volume II. Springer, Berlin (1991). | MR | JFM
[12] Thorner, J.: Bounded gaps between primes in Chebotarev sets. Res. Math. Sci. (electronic only) 1 (2014), Paper No. 4, 16 pages. | DOI | MR | JFM
[13] Vatwani, A.: Bounded gaps between Gaussian primes. J. Number Theory 171 (2017), 449-473. | DOI | MR | JFM
[14] Zhang, Y.: Bounded gaps between primes. Ann. Math. (2) 179 (2014), 1121-1174. | DOI | MR | JFM
Cité par Sources :