A new algorithm for approximating the least concave majorant
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1071-1093.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The least concave majorant, $\hat F$, of a continuous function $F$ on a closed interval, $I$, is defined by \[ \hat F (x) = \inf \{ G(x)\colon G \geq F,\ G \text { concave}\},\quad x \in I. \] We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in \mathcal {C}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat S$ is then a good approximation to $\hat F$. \endgraf We give two examples, one to illustrate, the other to apply our algorithm.
DOI : 10.21136/CMJ.2017.0408-16
Classification : 26A51, 46N10, 52A41
Keywords: least concave majorant; level function; spline approximation
@article{10_21136_CMJ_2017_0408_16,
     author = {Franc\r{u}, Martin and Kerman, Ron and Sinnamon, Gord},
     title = {A new algorithm for approximating the least concave majorant},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1071--1093},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2017},
     doi = {10.21136/CMJ.2017.0408-16},
     mrnumber = {3736020},
     zbl = {06819574},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0408-16/}
}
TY  - JOUR
AU  - Franců, Martin
AU  - Kerman, Ron
AU  - Sinnamon, Gord
TI  - A new algorithm for approximating the least concave majorant
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1071
EP  - 1093
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0408-16/
DO  - 10.21136/CMJ.2017.0408-16
LA  - en
ID  - 10_21136_CMJ_2017_0408_16
ER  - 
%0 Journal Article
%A Franců, Martin
%A Kerman, Ron
%A Sinnamon, Gord
%T A new algorithm for approximating the least concave majorant
%J Czechoslovak Mathematical Journal
%D 2017
%P 1071-1093
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0408-16/
%R 10.21136/CMJ.2017.0408-16
%G en
%F 10_21136_CMJ_2017_0408_16
Franců, Martin; Kerman, Ron; Sinnamon, Gord. A new algorithm for approximating the least concave majorant. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1071-1093. doi : 10.21136/CMJ.2017.0408-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0408-16/

Cité par Sources :