A new algorithm for approximating the least concave majorant
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1071-1093
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The least concave majorant, $\hat F$, of a continuous function $F$ on a closed interval, $I$, is defined by \[ \hat F (x) = \inf \{ G(x)\colon G \geq F,\ G \text { concave}\},\quad x \in I. \] We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in \mathcal {C}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat S$ is then a good approximation to $\hat F$. \endgraf We give two examples, one to illustrate, the other to apply our algorithm.
The least concave majorant, $\hat F$, of a continuous function $F$ on a closed interval, $I$, is defined by \[ \hat F (x) = \inf \{ G(x)\colon G \geq F,\ G \text { concave}\},\quad x \in I. \] We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in \mathcal {C}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat S$ is then a good approximation to $\hat F$. \endgraf We give two examples, one to illustrate, the other to apply our algorithm.
DOI : 10.21136/CMJ.2017.0408-16
Classification : 26A51, 46N10, 52A41
Keywords: least concave majorant; level function; spline approximation
@article{10_21136_CMJ_2017_0408_16,
     author = {Franc\r{u}, Martin and Kerman, Ron and Sinnamon, Gord},
     title = {A new algorithm for approximating the least concave majorant},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1071--1093},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0408-16},
     mrnumber = {3736020},
     zbl = {06819574},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0408-16/}
}
TY  - JOUR
AU  - Franců, Martin
AU  - Kerman, Ron
AU  - Sinnamon, Gord
TI  - A new algorithm for approximating the least concave majorant
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1071
EP  - 1093
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0408-16/
DO  - 10.21136/CMJ.2017.0408-16
LA  - en
ID  - 10_21136_CMJ_2017_0408_16
ER  - 
%0 Journal Article
%A Franců, Martin
%A Kerman, Ron
%A Sinnamon, Gord
%T A new algorithm for approximating the least concave majorant
%J Czechoslovak Mathematical Journal
%D 2017
%P 1071-1093
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0408-16/
%R 10.21136/CMJ.2017.0408-16
%G en
%F 10_21136_CMJ_2017_0408_16
Franců, Martin; Kerman, Ron; Sinnamon, Gord. A new algorithm for approximating the least concave majorant. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1071-1093. doi: 10.21136/CMJ.2017.0408-16

[1] Brudnyĭ, Y. A., Krugljak, N. Y.: Interpolation Functors and Interpolation Spaces. Vol. 1. North-Holland Mathematical Library 47, Amsterdam (1991). | MR | JFM

[2] Carolan, C. A.: The least concave majorant of the empirical distribution function. Can. J. Stat. 30 (2002), 317-328. | DOI | MR | JFM

[3] Debreu, G.: Least concave utility functions. J. Math. Econ. 3 (1976), 121-129. | DOI | MR | JFM

[4] Hall, C. A., Meyer, W. W.: Optimal error bounds for cubic spline interpolation. J. Approximation Theory 16 (1976), 105-122. | DOI | MR | JFM

[5] Halperin, I.: Function spaces. Can. J. Math. 5 (1953), 273-288. | DOI | MR | JFM

[6] Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets, Approximation, and Statistical Applications. Lecture Notes in Statistics 129, Springer, Berlin (1998). | DOI | MR | JFM

[7] Jarvis, R. A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2 (1973), 18-21. | DOI | MR | JFM

[8] Kerman, R., Milman, M., Sinnamon, G.: On the Brudnyĭ-Krugljak duality theory of spaces formed by the $\mathcal{K}$-method of interpolation. Rev. Mat. Complut. 20 (2007), 367-389. | DOI | MR | JFM

[9] Lorentz, G. G.: Bernstein Polynomials. Mathematical Expositions, no. 8. University of Toronto Press X, Toronto (1953). | MR | JFM

[10] Mastyło, M., Sinnamon, G.: A Calderón couple of down spaces. J. Funct. Anal. 240 (2006), 192-225. | DOI | MR | JFM

[11] Peetre, J.: Concave majorants of positive functions. Acta Math. Acad. Sci. Hung. 21 (1970), 327-333. | DOI | MR | JFM

Cité par Sources :