Generalized Lebesgue points for Sobolev functions
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 143-150
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point $x$ in a metric measure space $(X,d,\mu )$ is called a generalized Lebesgue point of a measurable function $f$ if the medians of $f$ over the balls $B(x,r)$ converge to $f(x)$ when $r$ converges to $0$. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function $f\in M^{s,p}(X)$, $0
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point $x$ in a metric measure space $(X,d,\mu )$ is called a generalized Lebesgue point of a measurable function $f$ if the medians of $f$ over the balls $B(x,r)$ converge to $f(x)$ when $r$ converges to $0$. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function $f\in M^{s,p}(X)$, $0$, $0$, where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal {H}^h$-Hausdorff measure zero for a suitable gauge function $h$.
DOI : 10.21136/CMJ.2017.0405-15
Classification : 28A78, 46E35
Keywords: Sobolev space; metric measure space; median; generalized Lebesgue point
@article{10_21136_CMJ_2017_0405_15,
     author = {Karak, Nijjwal},
     title = {Generalized {Lebesgue} points for {Sobolev} functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {143--150},
     year = {2017},
     volume = {67},
     number = {1},
     doi = {10.21136/CMJ.2017.0405-15},
     mrnumber = {3633003},
     zbl = {06738509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0405-15/}
}
TY  - JOUR
AU  - Karak, Nijjwal
TI  - Generalized Lebesgue points for Sobolev functions
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 143
EP  - 150
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0405-15/
DO  - 10.21136/CMJ.2017.0405-15
LA  - en
ID  - 10_21136_CMJ_2017_0405_15
ER  - 
%0 Journal Article
%A Karak, Nijjwal
%T Generalized Lebesgue points for Sobolev functions
%J Czechoslovak Mathematical Journal
%D 2017
%P 143-150
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0405-15/
%R 10.21136/CMJ.2017.0405-15
%G en
%F 10_21136_CMJ_2017_0405_15
Karak, Nijjwal. Generalized Lebesgue points for Sobolev functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 143-150. doi: 10.21136/CMJ.2017.0405-15

[1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314, Springer, Berlin (1996). | DOI | MR | JFM

[2] Björn, J., Onninen, J.: Orlicz capacities and Hausdorff measures on metric spaces. Math. Z. 251 (2005), 131-146. | DOI | MR | JFM

[3] Costea, Ş.: Besov capacity and Hausdorff measures in metric measure spaces. Publ. Mat. 53 (2009), 141-178. | DOI | MR | JFM

[4] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). | MR | JFM

[5] Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, New York (1969). | DOI | MR | JFM

[6] Federer, H., Ziemer, W. P.: The Lebesgue set of a function whose distribution derivatives are $p$-th power summable. Math. J., Indiana Univ. 22 (1972), 139-158. | DOI | MR | JFM

[7] Fujii, N.: A condition for a two-weight norm inequality for singular integral operators. Stud. Math. 98 (1991), 175-190. | DOI | MR | JFM

[8] Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415. | DOI | MR | JFM

[9] Hajłasz, P., Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoam. 14 (1998), 601-622. | DOI | MR | JFM

[10] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), 1-101. | DOI | MR | JFM

[11] Hedberg, L. I., Netrusov, Y.: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation. Mem. Am. Math. Soc. 188 (2007), 1-97. | DOI | MR | JFM

[12] Heikkinen, T., Koskela, P., Tuominen, H.: Approximation and quasicontinuity of Besov and Triebel-Lizorkin functions. To appear in Trans Am. Math. Soc. | MR

[13] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Mineola (2006). | MR | JFM

[14] Karak, N., Koskela, P.: Capacities and Hausdorff measures on metric spaces. Rev. Mat. Complut. 28 (2015), 733-740. | DOI | MR | JFM

[15] Karak, N., Koskela, P.: Lebesgue points via the Poincaré inequality. Sci. China Math. 58 (2015), 1697-1706. | DOI | MR | JFM

[16] Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H.: Lebesgue points and capacities via the boxing inequality in metric spaces. Indiana Univ. Math. J. 57 (2008), 401-430. | DOI | MR | JFM

[17] Kinnunen, J., Latvala, V.: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoam. 18 (2002), 685-700. | DOI | MR | JFM

[18] Koskela, P., Saksman, E.: Pointwise characterizations of Hardy-Sobolev functions. Math. Res. Lett. 15 (2008), 727-744. | DOI | MR | JFM

[19] Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings. Adv. Math. 226 (2011), 3579-3621. | DOI | MR | JFM

[20] Maz'ya, V. G., Khavin, V. P.: Non-linear potential theory. Russ. Math. Surv. 27 (1972), 71-148. | DOI | JFM

[21] Netrusov, Yu. V.: Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type. Proc. Steklov Inst. Math. 187 (1990), 185-203 187 1989 162-177 Translation from Tr. Mat. Inst. Steklova. | MR | JFM

[22] Orobitg, J.: Spectral synthesis in spaces of functions with derivatives in $H^1$. Harmonic Analysis and Partial Differential Equations Proc. Int. Conf., El Escorial, 1987, Lect. Notes Math. 1384, Springer, Berlin (1989), 202-206. | DOI | MR | JFM

[23] Poelhuis, J., Torchinsky, A.: Medians, continuity, and vanishing oscillation. Stud. Math. 213 (2012), 227-242. | DOI | MR | JFM

[24] Shanmugalingam, N.: Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16 (2000), 243-279. | DOI | MR | JFM

[25] Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28 (1979), 511-544. | DOI | MR | JFM

[26] Yang, D.: New characterizations of Hajłasz-Sobolev spaces on metric spaces. Sci. China, Ser. A 46 (2003), 675-689. | DOI | MR | JFM

[27] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics 120, Springer, New York (1989). | DOI | MR | JFM

Cité par Sources :