Generalized Lebesgue points for Sobolev functions
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 143-150.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point $x$ in a metric measure space $(X,d,\mu )$ is called a generalized Lebesgue point of a measurable function $f$ if the medians of $f$ over the balls $B(x,r)$ converge to $f(x)$ when $r$ converges to $0$. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function $f\in M^{s,p}(X)$, $0$, $0$, where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal {H}^h$-Hausdorff measure zero for a suitable gauge function $h$.
DOI : 10.21136/CMJ.2017.0405-15
Classification : 28A78, 46E35
Keywords: Sobolev space; metric measure space; median; generalized Lebesgue point
@article{10_21136_CMJ_2017_0405_15,
     author = {Karak, Nijjwal},
     title = {Generalized {Lebesgue} points for {Sobolev} functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {143--150},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2017},
     doi = {10.21136/CMJ.2017.0405-15},
     mrnumber = {3633003},
     zbl = {06738509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0405-15/}
}
TY  - JOUR
AU  - Karak, Nijjwal
TI  - Generalized Lebesgue points for Sobolev functions
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 143
EP  - 150
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0405-15/
DO  - 10.21136/CMJ.2017.0405-15
LA  - en
ID  - 10_21136_CMJ_2017_0405_15
ER  - 
%0 Journal Article
%A Karak, Nijjwal
%T Generalized Lebesgue points for Sobolev functions
%J Czechoslovak Mathematical Journal
%D 2017
%P 143-150
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0405-15/
%R 10.21136/CMJ.2017.0405-15
%G en
%F 10_21136_CMJ_2017_0405_15
Karak, Nijjwal. Generalized Lebesgue points for Sobolev functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 143-150. doi : 10.21136/CMJ.2017.0405-15. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0405-15/

Cité par Sources :