Pointwise Fourier inversion of distributions on spheres
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1059-1070.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a distribution $T$ on the sphere we define, in analogy to the work of Łojasiewicz, the value of $T$ at a point $\xi $ of the sphere and we show that if $T$ has the value $\tau $ at $\xi $, then the Fourier-Laplace series of $T$ at $\xi $ is Abel-summable to $\tau $.
DOI : 10.21136/CMJ.2017.0403-16
Classification : 42C10, 46F12
Keywords: distribution; sphere; Fourier-Laplace series; Abel summability
@article{10_21136_CMJ_2017_0403_16,
     author = {Gonz\'alez Vieli, Francisco Javier},
     title = {Pointwise {Fourier} inversion of distributions on spheres},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1059--1070},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2017},
     doi = {10.21136/CMJ.2017.0403-16},
     mrnumber = {3736019},
     zbl = {06819573},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0403-16/}
}
TY  - JOUR
AU  - González Vieli, Francisco Javier
TI  - Pointwise Fourier inversion of distributions on spheres
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1059
EP  - 1070
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0403-16/
DO  - 10.21136/CMJ.2017.0403-16
LA  - en
ID  - 10_21136_CMJ_2017_0403_16
ER  - 
%0 Journal Article
%A González Vieli, Francisco Javier
%T Pointwise Fourier inversion of distributions on spheres
%J Czechoslovak Mathematical Journal
%D 2017
%P 1059-1070
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0403-16/
%R 10.21136/CMJ.2017.0403-16
%G en
%F 10_21136_CMJ_2017_0403_16
González Vieli, Francisco Javier. Pointwise Fourier inversion of distributions on spheres. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1059-1070. doi : 10.21136/CMJ.2017.0403-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0403-16/

Cité par Sources :