Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1049-1058.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s, J. G. Thompson posed the following conjecture: If $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G) = N(L)$, then $G\cong L$. We prove this conjecture for an infinite class of simple groups. Let $p$ be an odd prime. We show that every finite group $G$ with the property $Z(G)=1$ and $N(G) = N(A_{i})$ is necessarily isomorphic to $A_{i}$, where $i\in \{2p,2p+1\}$.
DOI : 10.21136/CMJ.2017.0396-16
Classification : 20D05, 20D60
Keywords: finite group; conjugacy class size; simple group
@article{10_21136_CMJ_2017_0396_16,
     author = {Babai, Azam and Mahmoudifar, Ali},
     title = {Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1049--1058},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2017},
     doi = {10.21136/CMJ.2017.0396-16},
     mrnumber = {3736018},
     zbl = {06819572},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/}
}
TY  - JOUR
AU  - Babai, Azam
AU  - Mahmoudifar, Ali
TI  - Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1049
EP  - 1058
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/
DO  - 10.21136/CMJ.2017.0396-16
LA  - en
ID  - 10_21136_CMJ_2017_0396_16
ER  - 
%0 Journal Article
%A Babai, Azam
%A Mahmoudifar, Ali
%T Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$
%J Czechoslovak Mathematical Journal
%D 2017
%P 1049-1058
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/
%R 10.21136/CMJ.2017.0396-16
%G en
%F 10_21136_CMJ_2017_0396_16
Babai, Azam; Mahmoudifar, Ali. Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1049-1058. doi : 10.21136/CMJ.2017.0396-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/

Cité par Sources :