Keywords: finite group; conjugacy class size; simple group
@article{10_21136_CMJ_2017_0396_16,
author = {Babai, Azam and Mahmoudifar, Ali},
title = {Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$},
journal = {Czechoslovak Mathematical Journal},
pages = {1049--1058},
year = {2017},
volume = {67},
number = {4},
doi = {10.21136/CMJ.2017.0396-16},
mrnumber = {3736018},
zbl = {06819572},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/}
}
TY - JOUR AU - Babai, Azam AU - Mahmoudifar, Ali TI - Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$ JO - Czechoslovak Mathematical Journal PY - 2017 SP - 1049 EP - 1058 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/ DO - 10.21136/CMJ.2017.0396-16 LA - en ID - 10_21136_CMJ_2017_0396_16 ER -
%0 Journal Article %A Babai, Azam %A Mahmoudifar, Ali %T Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$ %J Czechoslovak Mathematical Journal %D 2017 %P 1049-1058 %V 67 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/ %R 10.21136/CMJ.2017.0396-16 %G en %F 10_21136_CMJ_2017_0396_16
Babai, Azam; Mahmoudifar, Ali. Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1049-1058. doi: 10.21136/CMJ.2017.0396-16
[1] Abdollahi, A., Shahverdi, H.: Characterization of the alternating group by its non-commuting graph. J. Algebra 357 (2012), 203-207. | DOI | MR | JFM
[2] Ahanjideh, N.: On Thompson's conjecture for some finite simple groups. J. Algebra 344 (2011), 205-228. | DOI | MR | JFM
[3] Ahanjideh, N.: On the Thompson's conjecture on conjugacy classes sizes. Int. J. Algebra Comput. 23 (2013), 37-68. | DOI | MR | JFM
[4] Alavi, S. H., Daneshkhah, A.: A new characterization of alternating and symmetric groups. J. Appl. Math. Comput. 17 (2005), 245-258. | DOI | MR | JFM
[5] Chen, G.: On Thompson's conjecture. J. Algebra 185 (1996), 184-193. | DOI | MR | JFM
[6] Gorshkov, I. B.: Thompson's conjecture for simple groups with connected prime graph. Algebra Logic 51 (2012), 111-127 translated from Algebra Logika 51 2012 168-192 Russian. | DOI | MR | JFM
[7] Gorshkov, I. B.: On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361. Proc. Steklov Inst. Math. 293 (2016), S58--S65 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22 2016 44-51 Russian. | DOI | MR | JFM
[8] Gorshkov, I. B.: Towards Thompson's conjecture for alternating and symmetric groups. J. Group Theory 19 (2016), 331-336. | DOI | MR | JFM
[9] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). | DOI | MR | JFM
[10] Mahmoudifar, A., Khosravi, B.: On the characterizability of alternating groups by order and prime graph. Sib. Math. J. 56 (2015), 125-131 translated from Sib. Mat. Zh. 56 2015 149-157 Russian. | DOI | MR | JFM
[11] Mazurov, V. D., eds., E. I. Khukhro: The Kourovka Notebook. Unsolved Problems in Group Theory. Institute of Mathematics, Russian Academy of Sciences Siberian Division, Novosibirsk (2010). | MR | JFM
[12] Vakula, I. A.: On the structure of finite groups isospectral to an alternating group. Proc. Steklov Inst. Math. 272 (2011), 271-286 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 16 2010 45-60 Russian. | DOI | MR | JFM
[13] Vasil'ev, A. V.: On Thompson's conjecture. Sib. Elektron. Mat. Izv. 6 (2009), 457-464. | MR | JFM
[14] Xu, M.: Thompson's conjecture for alternating group of degree 22. Front. Math. China 8 (2013), 1227-1236. | DOI | MR | JFM
Cité par Sources :