Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1049-1058 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s, J. G. Thompson posed the following conjecture: If $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G) = N(L)$, then $G\cong L$. We prove this conjecture for an infinite class of simple groups. Let $p$ be an odd prime. We show that every finite group $G$ with the property $Z(G)=1$ and $N(G) = N(A_{i})$ is necessarily isomorphic to $A_{i}$, where $i\in \{2p,2p+1\}$.
For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s, J. G. Thompson posed the following conjecture: If $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G) = N(L)$, then $G\cong L$. We prove this conjecture for an infinite class of simple groups. Let $p$ be an odd prime. We show that every finite group $G$ with the property $Z(G)=1$ and $N(G) = N(A_{i})$ is necessarily isomorphic to $A_{i}$, where $i\in \{2p,2p+1\}$.
DOI : 10.21136/CMJ.2017.0396-16
Classification : 20D05, 20D60
Keywords: finite group; conjugacy class size; simple group
@article{10_21136_CMJ_2017_0396_16,
     author = {Babai, Azam and Mahmoudifar, Ali},
     title = {Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1049--1058},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0396-16},
     mrnumber = {3736018},
     zbl = {06819572},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/}
}
TY  - JOUR
AU  - Babai, Azam
AU  - Mahmoudifar, Ali
TI  - Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1049
EP  - 1058
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/
DO  - 10.21136/CMJ.2017.0396-16
LA  - en
ID  - 10_21136_CMJ_2017_0396_16
ER  - 
%0 Journal Article
%A Babai, Azam
%A Mahmoudifar, Ali
%T Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$
%J Czechoslovak Mathematical Journal
%D 2017
%P 1049-1058
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0396-16/
%R 10.21136/CMJ.2017.0396-16
%G en
%F 10_21136_CMJ_2017_0396_16
Babai, Azam; Mahmoudifar, Ali. Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1049-1058. doi: 10.21136/CMJ.2017.0396-16

[1] Abdollahi, A., Shahverdi, H.: Characterization of the alternating group by its non-commuting graph. J. Algebra 357 (2012), 203-207. | DOI | MR | JFM

[2] Ahanjideh, N.: On Thompson's conjecture for some finite simple groups. J. Algebra 344 (2011), 205-228. | DOI | MR | JFM

[3] Ahanjideh, N.: On the Thompson's conjecture on conjugacy classes sizes. Int. J. Algebra Comput. 23 (2013), 37-68. | DOI | MR | JFM

[4] Alavi, S. H., Daneshkhah, A.: A new characterization of alternating and symmetric groups. J. Appl. Math. Comput. 17 (2005), 245-258. | DOI | MR | JFM

[5] Chen, G.: On Thompson's conjecture. J. Algebra 185 (1996), 184-193. | DOI | MR | JFM

[6] Gorshkov, I. B.: Thompson's conjecture for simple groups with connected prime graph. Algebra Logic 51 (2012), 111-127 translated from Algebra Logika 51 2012 168-192 Russian. | DOI | MR | JFM

[7] Gorshkov, I. B.: On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361. Proc. Steklov Inst. Math. 293 (2016), S58--S65 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22 2016 44-51 Russian. | DOI | MR | JFM

[8] Gorshkov, I. B.: Towards Thompson's conjecture for alternating and symmetric groups. J. Group Theory 19 (2016), 331-336. | DOI | MR | JFM

[9] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). | DOI | MR | JFM

[10] Mahmoudifar, A., Khosravi, B.: On the characterizability of alternating groups by order and prime graph. Sib. Math. J. 56 (2015), 125-131 translated from Sib. Mat. Zh. 56 2015 149-157 Russian. | DOI | MR | JFM

[11] Mazurov, V. D., eds., E. I. Khukhro: The Kourovka Notebook. Unsolved Problems in Group Theory. Institute of Mathematics, Russian Academy of Sciences Siberian Division, Novosibirsk (2010). | MR | JFM

[12] Vakula, I. A.: On the structure of finite groups isospectral to an alternating group. Proc. Steklov Inst. Math. 272 (2011), 271-286 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 16 2010 45-60 Russian. | DOI | MR | JFM

[13] Vasil'ev, A. V.: On Thompson's conjecture. Sib. Elektron. Mat. Izv. 6 (2009), 457-464. | MR | JFM

[14] Xu, M.: Thompson's conjecture for alternating group of degree 22. Front. Math. China 8 (2013), 1227-1236. | DOI | MR | JFM

Cité par Sources :