On the quantum groups and semigroups of maps between noncommutative spaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 97-121
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define algebraic families of (all) morphisms which are purely algebraic analogs of quantum families of (all) maps introduced by P. M. Sołtan. Also, algebraic families of (all) isomorphisms are introduced. By using these notions we construct two classes of Hopf-algebras which may be interpreted as the quantum group of all maps from a finite space to a quantum group, and the quantum group of all automorphisms of a finite noncommutative (NC) space. As special cases three classes of NC objects are introduced: quantum group of gauge transformations, Pontryagin dual of a quantum group, and Galois-Hopf-algebra of an algebra extension.
We define algebraic families of (all) morphisms which are purely algebraic analogs of quantum families of (all) maps introduced by P. M. Sołtan. Also, algebraic families of (all) isomorphisms are introduced. By using these notions we construct two classes of Hopf-algebras which may be interpreted as the quantum group of all maps from a finite space to a quantum group, and the quantum group of all automorphisms of a finite noncommutative (NC) space. As special cases three classes of NC objects are introduced: quantum group of gauge transformations, Pontryagin dual of a quantum group, and Galois-Hopf-algebra of an algebra extension.
DOI : 10.21136/CMJ.2017.0393-15
Classification : 16T05, 16T10, 16T20, 58B34
Keywords: Hopf-algebra; bialgebra; quantum group; noncommutative geometry
@article{10_21136_CMJ_2017_0393_15,
     author = {Sadr, Maysam Maysami},
     title = {On the quantum groups and semigroups of maps between noncommutative spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {97--121},
     year = {2017},
     volume = {67},
     number = {1},
     doi = {10.21136/CMJ.2017.0393-15},
     mrnumber = {3633001},
     zbl = {06738507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0393-15/}
}
TY  - JOUR
AU  - Sadr, Maysam Maysami
TI  - On the quantum groups and semigroups of maps between noncommutative spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 97
EP  - 121
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0393-15/
DO  - 10.21136/CMJ.2017.0393-15
LA  - en
ID  - 10_21136_CMJ_2017_0393_15
ER  - 
%0 Journal Article
%A Sadr, Maysam Maysami
%T On the quantum groups and semigroups of maps between noncommutative spaces
%J Czechoslovak Mathematical Journal
%D 2017
%P 97-121
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0393-15/
%R 10.21136/CMJ.2017.0393-15
%G en
%F 10_21136_CMJ_2017_0393_15
Sadr, Maysam Maysami. On the quantum groups and semigroups of maps between noncommutative spaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 97-121. doi: 10.21136/CMJ.2017.0393-15

[1] Banica, T.: Quantum automorphism groups of small metric spaces. Pac. J. Math. 219 (2005), 27-51. | DOI | MR | JFM

[2] Banica, T., Bichon, J., Collins, B.: Quantum permutation groups: a survey. Noncommutative Harmonic Analysis with Applications to Probability Papers presented at the 9th Workshop, Będlewo, Poland, 2006, Banach Center Publications 78, Polish Academy of Sciences, Institute of Mathematics, Warsaw M. Bożejko et al. (2008), 13-34. | MR | JFM

[3] Baues, H. J.: Algebraic Homotopy. Cambridge Studies in Advanced Mathematics 15, Cambridge University Press, Cambridge (1989). | MR | JFM

[4] Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157 (1993), 591-638. | DOI | MR | JFM

[5] Gersten, S. M.: Homotopy theory of rings. J. Algebra 19 (1971), 396-415. | DOI | MR | JFM

[6] Hovey, M., Palmieri, J. H., Strickland, N. P.: Axiomatic stable homotopy theory. Mem. Am. Math. Soc. Vol. 128 (1997), 114 pages. | DOI | MR | JFM

[7] Jardine, J. F.: Algebraic homotopy theory. Can. J. Math. 33 (1981), 302-319. | DOI | MR | JFM

[8] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189, Springer, New York (1999). | DOI | MR | JFM

[9] Majid, S.: Foundations of Quantum Group Theory. Cambridge Univ. Press, Cambridge (1995). | MR | JFM

[10] May, J. P.: Picard groups, Grothendieck rings, and Burnside rings of categories. Adv. Math. 163 (2001), 1-16. | DOI | MR | JFM

[11] Milne, J. S.: Basic Theory of Affine Group Schemes. Available online: www.jmilne.org /math/CourseNotes/AGS.pdf (2012).

[12] Podleś, P.: Quantum spaces and their symmetry groups. PhD Thesis, Department of Mathematical Methods in Physics Faculty of Physics, Warsaw University (1989).

[13] Sadr, M. M.: A kind of compact quantum semigroups. Int. J. Math. Math. Sci. 2012 (2012), Article ID 725270, 10 pages. | DOI | MR | JFM

[14] Skalski, A., Sołtan, P. M.: Quantum families of invertible maps and related problems. Can. J. Math. 68 (2016), 698-720. | DOI | MR | JFM

[15] Sołtan, P. M.: Quantum families of maps and quantum semigroups on finite quantum spaces. J. Geom. Phys. 59 (2009), 354-368. | DOI | MR | JFM

[16] Sołtan, P. M.: Quantum $\rm SO(3)$ groups and quantum group actions on $M_2$. J. Noncommut. Geom. 4 (2010), 1-28. | DOI | MR | JFM

[17] Sołtan, P. M.: On quantum maps into quantum semigroups. Houston J. Math. 40 (2014), 779-790. | MR | JFM

[18] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). | MR | JFM

[19] Wang, S.: Free products of compact quantum groups. Commun. Math. Phys. 167 (1995), 671-692. | DOI | MR | JFM

[20] Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195 (1998), 195-211. | DOI | MR | JFM

[21] Woronowicz, S. L.: Pseudospaces, pseudogroups and Pontrjagin duality. Mathematical Problems in Theoretical Physics Proc. Int. Conf. on Mathematical Physics, Lausanne, 1979, Lect. Notes Phys. Vol. 116, Springer, Berlin 407-412 (1980). | DOI | MR | JFM

Cité par Sources :