Relative Gorenstein injective covers with respect to a semidualizing module
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 87-95
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative Noetherian ring and let $C$ be a semidualizing $R$-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to $C$ which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every $G_{C}$-injective module $G$, the character module $G^{+}$ is $G_{C}$-flat, then the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is covering.
Let $R$ be a commutative Noetherian ring and let $C$ be a semidualizing $R$-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to $C$ which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every $G_{C}$-injective module $G$, the character module $G^{+}$ is $G_{C}$-flat, then the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is covering.
DOI : 10.21136/CMJ.2017.0379-15
Classification : 13D05, 13D45, 18G20
Keywords: semidualizing module; $G_{C}$-flat module; $G _{C}$-injective module; cover; envelope
@article{10_21136_CMJ_2017_0379_15,
     author = {Tavasoli, Elham and Salimi, Maryam},
     title = {Relative {Gorenstein} injective covers with respect to a semidualizing module},
     journal = {Czechoslovak Mathematical Journal},
     pages = {87--95},
     year = {2017},
     volume = {67},
     number = {1},
     doi = {10.21136/CMJ.2017.0379-15},
     mrnumber = {3633000},
     zbl = {06738506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0379-15/}
}
TY  - JOUR
AU  - Tavasoli, Elham
AU  - Salimi, Maryam
TI  - Relative Gorenstein injective covers with respect to a semidualizing module
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 87
EP  - 95
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0379-15/
DO  - 10.21136/CMJ.2017.0379-15
LA  - en
ID  - 10_21136_CMJ_2017_0379_15
ER  - 
%0 Journal Article
%A Tavasoli, Elham
%A Salimi, Maryam
%T Relative Gorenstein injective covers with respect to a semidualizing module
%J Czechoslovak Mathematical Journal
%D 2017
%P 87-95
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0379-15/
%R 10.21136/CMJ.2017.0379-15
%G en
%F 10_21136_CMJ_2017_0379_15
Tavasoli, Elham; Salimi, Maryam. Relative Gorenstein injective covers with respect to a semidualizing module. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 87-95. doi: 10.21136/CMJ.2017.0379-15

[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). | DOI | MR | JFM

[2] Avramov, L. L., Foxby, H. B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc., III. Ser. 75 (1997), 241-270. | DOI | MR | JFM

[3] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | JFM

[4] Enochs, E. E., Holm, H.: Cotorsion pairs associated with Auslander categories. Isr. J. Math. 174 253-268 (2009). | DOI | MR | JFM

[5] Enochs, E. E., Iacob, A.: Gorenstein injective covers and envelopes over Noetherian rings. Proc. Am. Math. Soc. 143 (2015), 5-12. | DOI | MR | JFM

[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[7] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62. | DOI | MR | JFM

[8] Enochs, E. E., López-Ramos, J. A.: Kaplansky classes. Rend. Semin. Math. Univ. Padova 107 (2002), 67-79. | MR | JFM

[9] Foxby, H. B.: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267-284. | DOI | MR | JFM

[10] Golod, E. S.: G-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 (1984), Russian 62-66. | MR | JFM

[11] Hashimoto, M.: Auslander-Buchweitz Approximations of Equivariant Modules. London Mathematical Society Lecture Note Series 282 Cambridge University Press, Cambridge (2000). | DOI | MR | JFM

[12] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM

[13] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimension. J. Pure Appl. Algebra 205 (2006), 423-445. | DOI | MR | JFM

[14] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs. J. Commut. Algebra 1 (2009), 621-633. | DOI | MR | JFM

[15] Krause, H.: The stable derived category of a noetherian scheme. Compos. Math. 141 (2005), 1128-1162. | DOI | MR | JFM

[16] Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13 Interscience Publisher a division of John Wiley and Sons, New York (1962). | MR | JFM

[17] Reiten, I.: The converse of a theorem of Sharp on Gorenstein modules. Proc. Am. Math. Soc. 32 (1972), 417-420. | DOI | MR | JFM

[18] Salimi, M., Tavasoli, E., Yassemi, S.: Gorenstein homological dimension with respect to a semidualizing module and a generalization of a theorem of Bass. Commun. Algebra 42 (2014), 2213-2221. | DOI | MR | JFM

[19] Sather-Wagstaff, S.: Semidualizing Modules. https://ssather.people.clemson.edu/DOCS/sdm.pdf | Zbl

[20] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. | DOI | MR | JFM

[21] Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theory 14 (2011), 403-428. | DOI | MR | JFM

[22] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. | DOI | MR | JFM

[23] Vasconcelos, W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14. Notas de Matematica 5 North-Holland Publishing, Amsterdam (1974). | MR | JFM

[24] White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra. 2 (2010), 111-137. | DOI | MR | JFM

Cité par Sources :