Keywords: semidualizing module; $G_{C}$-flat module; $G _{C}$-injective module; cover; envelope
@article{10_21136_CMJ_2017_0379_15,
author = {Tavasoli, Elham and Salimi, Maryam},
title = {Relative {Gorenstein} injective covers with respect to a semidualizing module},
journal = {Czechoslovak Mathematical Journal},
pages = {87--95},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0379-15},
mrnumber = {3633000},
zbl = {06738506},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0379-15/}
}
TY - JOUR AU - Tavasoli, Elham AU - Salimi, Maryam TI - Relative Gorenstein injective covers with respect to a semidualizing module JO - Czechoslovak Mathematical Journal PY - 2017 SP - 87 EP - 95 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0379-15/ DO - 10.21136/CMJ.2017.0379-15 LA - en ID - 10_21136_CMJ_2017_0379_15 ER -
%0 Journal Article %A Tavasoli, Elham %A Salimi, Maryam %T Relative Gorenstein injective covers with respect to a semidualizing module %J Czechoslovak Mathematical Journal %D 2017 %P 87-95 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0379-15/ %R 10.21136/CMJ.2017.0379-15 %G en %F 10_21136_CMJ_2017_0379_15
Tavasoli, Elham; Salimi, Maryam. Relative Gorenstein injective covers with respect to a semidualizing module. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 87-95. doi: 10.21136/CMJ.2017.0379-15
[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). | DOI | MR | JFM
[2] Avramov, L. L., Foxby, H. B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc., III. Ser. 75 (1997), 241-270. | DOI | MR | JFM
[3] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | JFM
[4] Enochs, E. E., Holm, H.: Cotorsion pairs associated with Auslander categories. Isr. J. Math. 174 253-268 (2009). | DOI | MR | JFM
[5] Enochs, E. E., Iacob, A.: Gorenstein injective covers and envelopes over Noetherian rings. Proc. Am. Math. Soc. 143 (2015), 5-12. | DOI | MR | JFM
[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). | DOI | MR | JFM
[7] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62. | DOI | MR | JFM
[8] Enochs, E. E., López-Ramos, J. A.: Kaplansky classes. Rend. Semin. Math. Univ. Padova 107 (2002), 67-79. | MR | JFM
[9] Foxby, H. B.: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267-284. | DOI | MR | JFM
[10] Golod, E. S.: G-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 (1984), Russian 62-66. | MR | JFM
[11] Hashimoto, M.: Auslander-Buchweitz Approximations of Equivariant Modules. London Mathematical Society Lecture Note Series 282 Cambridge University Press, Cambridge (2000). | DOI | MR | JFM
[12] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM
[13] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimension. J. Pure Appl. Algebra 205 (2006), 423-445. | DOI | MR | JFM
[14] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs. J. Commut. Algebra 1 (2009), 621-633. | DOI | MR | JFM
[15] Krause, H.: The stable derived category of a noetherian scheme. Compos. Math. 141 (2005), 1128-1162. | DOI | MR | JFM
[16] Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13 Interscience Publisher a division of John Wiley and Sons, New York (1962). | MR | JFM
[17] Reiten, I.: The converse of a theorem of Sharp on Gorenstein modules. Proc. Am. Math. Soc. 32 (1972), 417-420. | DOI | MR | JFM
[18] Salimi, M., Tavasoli, E., Yassemi, S.: Gorenstein homological dimension with respect to a semidualizing module and a generalization of a theorem of Bass. Commun. Algebra 42 (2014), 2213-2221. | DOI | MR | JFM
[19] Sather-Wagstaff, S.: Semidualizing Modules. https://ssather.people.clemson.edu/DOCS/sdm.pdf | Zbl
[20] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. | DOI | MR | JFM
[21] Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theory 14 (2011), 403-428. | DOI | MR | JFM
[22] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. | DOI | MR | JFM
[23] Vasconcelos, W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14. Notas de Matematica 5 North-Holland Publishing, Amsterdam (1974). | MR | JFM
[24] White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra. 2 (2010), 111-137. | DOI | MR | JFM
Cité par Sources :