Minimal Reeb vector fields on almost Kenmotsu manifolds
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 73-86 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal.
A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal.
DOI : 10.21136/CMJ.2017.0377-15
Classification : 53C25, 53C43, 53D15
Keywords: almost Kenmotsu manifold; Reeb vector field; minimal vector field; harmonic vector field; Lie group
@article{10_21136_CMJ_2017_0377_15,
     author = {Wang, Yaning},
     title = {Minimal {Reeb} vector fields on almost {Kenmotsu} manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {73--86},
     year = {2017},
     volume = {67},
     number = {1},
     doi = {10.21136/CMJ.2017.0377-15},
     mrnumber = {3632999},
     zbl = {06738505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0377-15/}
}
TY  - JOUR
AU  - Wang, Yaning
TI  - Minimal Reeb vector fields on almost Kenmotsu manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 73
EP  - 86
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0377-15/
DO  - 10.21136/CMJ.2017.0377-15
LA  - en
ID  - 10_21136_CMJ_2017_0377_15
ER  - 
%0 Journal Article
%A Wang, Yaning
%T Minimal Reeb vector fields on almost Kenmotsu manifolds
%J Czechoslovak Mathematical Journal
%D 2017
%P 73-86
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0377-15/
%R 10.21136/CMJ.2017.0377-15
%G en
%F 10_21136_CMJ_2017_0377_15
Wang, Yaning. Minimal Reeb vector fields on almost Kenmotsu manifolds. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 73-86. doi: 10.21136/CMJ.2017.0377-15

[1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston (2010). | DOI | MR | JFM

[2] Boeckx, E., Vanhecke, L.: Harmonic and minimal vector fields on tangent and unit tangent bundles. Differ. Geom. Appl. 13 (2000), 77-93. | DOI | MR | JFM

[3] Cho, J. T., Kimura, M.: Reeb flow symmetry on almost contact three-manifolds. Differ. Geom. Appl. 35 (2014), 266-273. | DOI | MR | JFM

[4] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343-354. | DOI | MR | JFM

[5] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions. J. Geom. 93 (2009), 46-61. | DOI | MR | JFM

[6] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds with a condition of $\eta$-parallelism. Differ. Geom. Appl. 27 (2009), 671-679. | DOI | MR | JFM

[7] Gil-Medrano, O.: Relationship between volume and energy of vector fields. Differ. Geom. Appl. 15 (2001), 137-152. | DOI | MR | JFM

[8] Gil-Medrano, O., Llinares-Fuster, E.: Minimal unit vector fields. Tohoku Math. J., II. 54 (2002), 71-84. | DOI | MR | JFM

[9] Gluck, H., Ziller, W.: On the volume of a unit vector field on the three-sphere. Comment. Math. Helv. 61 (1986), 177-192. | DOI | MR | JFM

[10] González-Dávila, J. C., Vanhecke, L.: Examples of minimal unit vector fields. Ann. Global Anal. Geom. 18 (2000), 385-404. | DOI | MR | JFM

[11] González-Dávila, J. C., Vanhecke, L.: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds. J. Geom. 72 (2001), 65-76. | DOI | MR | JFM

[12] González-Dávila, J. C., Vanhecke, L.: Invariant harmonic unit vector fields on Lie groups. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), 377-403. | MR | JFM

[13] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4 (1981), 1-27. | DOI | MR | JFM

[14] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J., II. Ser. 24 (1972), 93-103. | DOI | MR | JFM

[15] Koufogiorgos, T., Markellos, M., Papantoniou, V. J.: The harmonicity of the Reeb vector field on contact metric 3-manifolds. Pac. J. Math. 234 (2008), 325-344. | DOI | MR | JFM

[16] Milnor, J. W.: Curvature of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293-329. | DOI | MR | JFM

[17] Olszak, Z.: Local conformal almost cosymplectic manifolds. Colloq. Math. 57 (1989), 73-87. | DOI | MR | JFM

[18] Pastore, A. M., Saltarelli, V.: Almost Kenmotsu manifolds with conformal Reeb foliation. Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 655-666. | DOI | MR | JFM

[19] Pastore, A. M., Saltarelli, V.: Generalized nullity distributions on almost Kenmotsu manifolds. Int. Electron. J. Geom. 4 (2011), 168-183. | MR | JFM

[20] Perrone, D.: Harmonic characteristic vector fields on contact metric three-manifolds. Bull. Aust. Math. Soc. 67 (2003), 305-315. | DOI | MR | JFM

[21] Perrone, D.: Almost contact metric manifolds whose Reeb vector field is a harmonic section. Acta Math. Hung. 138 (2013), 102-126. | DOI | MR | JFM

[22] Perrone, D.: Minimal Reeb vector fields on almost cosymplectic manifolds. Kodai Math. J. 36 (2013), 258-274. | DOI | MR | JFM

[23] Saltarelli, V.: Three-dimensional almost Kenmotsu manifolds satisfying certain nullity conditions. Bull. Malays. Math. Sci. Soc. 38 (2015), 437-459. | DOI | MR | JFM

[24] Vergara-Diaz, E., Wood, C. M.: Harmonic almost contact structures. Geom. Dedicata 123 (2006), 131-151. | DOI | MR | JFM

Cité par Sources :