Minimal Reeb vector fields on almost Kenmotsu manifolds
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 73-86
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal.
DOI :
10.21136/CMJ.2017.0377-15
Classification :
53C25, 53C43, 53D15
Keywords: almost Kenmotsu manifold; Reeb vector field; minimal vector field; harmonic vector field; Lie group
Keywords: almost Kenmotsu manifold; Reeb vector field; minimal vector field; harmonic vector field; Lie group
@article{10_21136_CMJ_2017_0377_15,
author = {Wang, Yaning},
title = {Minimal {Reeb} vector fields on almost {Kenmotsu} manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {73--86},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2017},
doi = {10.21136/CMJ.2017.0377-15},
mrnumber = {3632999},
zbl = {06738505},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0377-15/}
}
TY - JOUR AU - Wang, Yaning TI - Minimal Reeb vector fields on almost Kenmotsu manifolds JO - Czechoslovak Mathematical Journal PY - 2017 SP - 73 EP - 86 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0377-15/ DO - 10.21136/CMJ.2017.0377-15 LA - en ID - 10_21136_CMJ_2017_0377_15 ER -
Wang, Yaning. Minimal Reeb vector fields on almost Kenmotsu manifolds. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 73-86. doi: 10.21136/CMJ.2017.0377-15
Cité par Sources :