Keywords: $d$-orthogonal polynomials; matrix element; coherent state; hypergeometric function; Meixner polynomials; $d$-dimensional linear functional vector
@article{10_21136_CMJ_2017_0358_15,
author = {Bouzeffour, Fethi and Ben Mansour, Hanen and Zaghouani, Ali},
title = {Deformed {Heisenberg} algebra with reflection and $d$-orthogonal polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {57--71},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0358-15},
mrnumber = {3632998},
zbl = {06738504},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0358-15/}
}
TY - JOUR AU - Bouzeffour, Fethi AU - Ben Mansour, Hanen AU - Zaghouani, Ali TI - Deformed Heisenberg algebra with reflection and $d$-orthogonal polynomials JO - Czechoslovak Mathematical Journal PY - 2017 SP - 57 EP - 71 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0358-15/ DO - 10.21136/CMJ.2017.0358-15 LA - en ID - 10_21136_CMJ_2017_0358_15 ER -
%0 Journal Article %A Bouzeffour, Fethi %A Ben Mansour, Hanen %A Zaghouani, Ali %T Deformed Heisenberg algebra with reflection and $d$-orthogonal polynomials %J Czechoslovak Mathematical Journal %D 2017 %P 57-71 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0358-15/ %R 10.21136/CMJ.2017.0358-15 %G en %F 10_21136_CMJ_2017_0358_15
Bouzeffour, Fethi; Ben Mansour, Hanen; Zaghouani, Ali. Deformed Heisenberg algebra with reflection and $d$-orthogonal polynomials. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 57-71. doi: 10.21136/CMJ.2017.0358-15
[1] Aptekarev, A. I.: Multiple orthogonal polynomials. J. Comput. Appl. Math. 99 (1998), 423-447. | DOI | MR | JFM
[2] Arvesú, J., Coussement, J., Assche, W. Van: Some discrete multiple orthogonal polynomials. J. Comput. Appl. Math. 153 (2003), 19-45. | DOI | MR | JFM
[3] Cheikh, Y. Ben, Lamiri, I.: On obtaining dual sequences via inversion coefficients. Proc. of the 4th workshop on advanced special functions and solutions of PDE's Sabaudia, Italy, 2009, Lecture Notes of Seminario Interdisciplinare di Mathematica {\it 9} A. Cialdea et al. (2010), 41-56. | JFM
[4] Cheikh, Y. Ben, Zaghouani, A.: $d$-orthogonality via generating functions. J. Comput. Appl. Math. 199 (2007), 2-22. | DOI | MR | JFM
[5] Bouzeffour, F., Zagouhani, A.: $q$-oscillator algebra and $d$-orthogonal polynomials. J. Nonlinear Math. Phys. 20 (2013), 480-494. | DOI | MR
[6] Genest, V. X., Miki, H., Vinet, L., Zhedanov, A.: The multivariate Charlier polynomials as matrix elements of the Euclidean group representation on oscillator states. J. Phys. A, Math. Theor. 47 (2014), Article ID 215204, 16 pages. | DOI | MR | JFM
[7] Genest, V. X., Vinet, L., Zhedanov, A.: $d$-orthogonal polynomials and $\frak {su}$ (2). J. Math. Anal. Appl. 390 (2012), 472-487. | DOI | MR | JFM
[8] Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their $q$-analogues. Springer Monographs in Mathematics, Springer, Berlin (2010). | DOI | MR | JFM
[9] Lamiri, I., Ouni, A.: $d$-orthogonality of some basic hypergeometric polynomials. Georgian Math. J. 20 (2013), 729-751. | DOI | MR | JFM
[10] Maroni, P.: L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux. Ann. Fac. Sci. Toulouse, Math. (5) 11 French (1989), 105-139. | DOI | MR | JFM
[11] Plyushchay, M. S.: Deformed Heisenberg algebra with reflection. Nuclear Physics B 491 (1997), 619-634. | DOI | MR | JFM
[12] Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillators calculus. Nonselfadjoint Operators and Related Topics. Workshop on Operator Theory and Its Applications Beersheva, Israel, 1992, Oper. Theory Adv. App. 73, Birkhäuser, Basel (1994), 369-396 A. Feintuch et al. | DOI | MR | JFM
[13] Assche, W. Van, Coussement, E.: Some classical multiple orthogonal polynomials. J. Comput. Appl. Math. 127 (2001), 317-347. | DOI | MR | JFM
[14] Iseghem, J. Van: Laplace transform inversion and Padé-type approximants. Appl. Numer. Math. 3 (1987), 529-538. | DOI | MR | JFM
[15] Vinet, L., Zhedanov, A.: Automorphisms of the Heisenberg-Weyl algebra and $d$-orthogonal polynomials. J. Math. Phys. 50 (2009), Article No. 033511, 19 pages. | DOI | MR | JFM
Cité par Sources :