Deformed Heisenberg algebra with reflection and $d$-orthogonal polynomials
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 57-71 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is devoted to the study of matrix elements of irreducible representations of the enveloping deformed Heisenberg algebra with reflection, motivated by recurrence relations satisfied by hypergeometric functions. It is shown that the matrix elements of a suitable operator given as a product of exponential functions are expressed in terms of $d$-orthogonal polynomials, which are reduced to the orthogonal Meixner polynomials when $d=1$. The underlying algebraic framework allowed a systematic derivation of the recurrence relations, difference equation, lowering and rising operators and generating functions which these polynomials satisfy.
This paper is devoted to the study of matrix elements of irreducible representations of the enveloping deformed Heisenberg algebra with reflection, motivated by recurrence relations satisfied by hypergeometric functions. It is shown that the matrix elements of a suitable operator given as a product of exponential functions are expressed in terms of $d$-orthogonal polynomials, which are reduced to the orthogonal Meixner polynomials when $d=1$. The underlying algebraic framework allowed a systematic derivation of the recurrence relations, difference equation, lowering and rising operators and generating functions which these polynomials satisfy.
DOI : 10.21136/CMJ.2017.0358-15
Classification : 22E47, 33C45, 33D15
Keywords: $d$-orthogonal polynomials; matrix element; coherent state; hypergeometric function; Meixner polynomials; $d$-dimensional linear functional vector
@article{10_21136_CMJ_2017_0358_15,
     author = {Bouzeffour, Fethi and Ben Mansour, Hanen and Zaghouani, Ali},
     title = {Deformed {Heisenberg} algebra with reflection and $d$-orthogonal polynomials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {57--71},
     year = {2017},
     volume = {67},
     number = {1},
     doi = {10.21136/CMJ.2017.0358-15},
     mrnumber = {3632998},
     zbl = {06738504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0358-15/}
}
TY  - JOUR
AU  - Bouzeffour, Fethi
AU  - Ben Mansour, Hanen
AU  - Zaghouani, Ali
TI  - Deformed Heisenberg algebra with reflection and $d$-orthogonal polynomials
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 57
EP  - 71
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0358-15/
DO  - 10.21136/CMJ.2017.0358-15
LA  - en
ID  - 10_21136_CMJ_2017_0358_15
ER  - 
%0 Journal Article
%A Bouzeffour, Fethi
%A Ben Mansour, Hanen
%A Zaghouani, Ali
%T Deformed Heisenberg algebra with reflection and $d$-orthogonal polynomials
%J Czechoslovak Mathematical Journal
%D 2017
%P 57-71
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0358-15/
%R 10.21136/CMJ.2017.0358-15
%G en
%F 10_21136_CMJ_2017_0358_15
Bouzeffour, Fethi; Ben Mansour, Hanen; Zaghouani, Ali. Deformed Heisenberg algebra with reflection and $d$-orthogonal polynomials. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 57-71. doi: 10.21136/CMJ.2017.0358-15

[1] Aptekarev, A. I.: Multiple orthogonal polynomials. J. Comput. Appl. Math. 99 (1998), 423-447. | DOI | MR | JFM

[2] Arvesú, J., Coussement, J., Assche, W. Van: Some discrete multiple orthogonal polynomials. J. Comput. Appl. Math. 153 (2003), 19-45. | DOI | MR | JFM

[3] Cheikh, Y. Ben, Lamiri, I.: On obtaining dual sequences via inversion coefficients. Proc. of the 4th workshop on advanced special functions and solutions of PDE's Sabaudia, Italy, 2009, Lecture Notes of Seminario Interdisciplinare di Mathematica {\it 9} A. Cialdea et al. (2010), 41-56. | JFM

[4] Cheikh, Y. Ben, Zaghouani, A.: $d$-orthogonality via generating functions. J. Comput. Appl. Math. 199 (2007), 2-22. | DOI | MR | JFM

[5] Bouzeffour, F., Zagouhani, A.: $q$-oscillator algebra and $d$-orthogonal polynomials. J. Nonlinear Math. Phys. 20 (2013), 480-494. | DOI | MR

[6] Genest, V. X., Miki, H., Vinet, L., Zhedanov, A.: The multivariate Charlier polynomials as matrix elements of the Euclidean group representation on oscillator states. J. Phys. A, Math. Theor. 47 (2014), Article ID 215204, 16 pages. | DOI | MR | JFM

[7] Genest, V. X., Vinet, L., Zhedanov, A.: $d$-orthogonal polynomials and $\frak {su}$ (2). J. Math. Anal. Appl. 390 (2012), 472-487. | DOI | MR | JFM

[8] Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their $q$-analogues. Springer Monographs in Mathematics, Springer, Berlin (2010). | DOI | MR | JFM

[9] Lamiri, I., Ouni, A.: $d$-orthogonality of some basic hypergeometric polynomials. Georgian Math. J. 20 (2013), 729-751. | DOI | MR | JFM

[10] Maroni, P.: L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux. Ann. Fac. Sci. Toulouse, Math. (5) 11 French (1989), 105-139. | DOI | MR | JFM

[11] Plyushchay, M. S.: Deformed Heisenberg algebra with reflection. Nuclear Physics B 491 (1997), 619-634. | DOI | MR | JFM

[12] Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillators calculus. Nonselfadjoint Operators and Related Topics. Workshop on Operator Theory and Its Applications Beersheva, Israel, 1992, Oper. Theory Adv. App. 73, Birkhäuser, Basel (1994), 369-396 A. Feintuch et al. | DOI | MR | JFM

[13] Assche, W. Van, Coussement, E.: Some classical multiple orthogonal polynomials. J. Comput. Appl. Math. 127 (2001), 317-347. | DOI | MR | JFM

[14] Iseghem, J. Van: Laplace transform inversion and Padé-type approximants. Appl. Numer. Math. 3 (1987), 529-538. | DOI | MR | JFM

[15] Vinet, L., Zhedanov, A.: Automorphisms of the Heisenberg-Weyl algebra and $d$-orthogonal polynomials. J. Math. Phys. 50 (2009), Article No. 033511, 19 pages. | DOI | MR | JFM

Cité par Sources :