Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring
@article{10_21136_CMJ_2017_0352_16,
author = {Dhara, Basudeb},
title = {Generalized derivations acting on multilinear polynomials in prime rings},
journal = {Czechoslovak Mathematical Journal},
pages = {95--119},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2017.0352-16},
mrnumber = {3783587},
zbl = {06861569},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/}
}
TY - JOUR AU - Dhara, Basudeb TI - Generalized derivations acting on multilinear polynomials in prime rings JO - Czechoslovak Mathematical Journal PY - 2018 SP - 95 EP - 119 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/ DO - 10.21136/CMJ.2017.0352-16 LA - en ID - 10_21136_CMJ_2017_0352_16 ER -
%0 Journal Article %A Dhara, Basudeb %T Generalized derivations acting on multilinear polynomials in prime rings %J Czechoslovak Mathematical Journal %D 2018 %P 95-119 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/ %R 10.21136/CMJ.2017.0352-16 %G en %F 10_21136_CMJ_2017_0352_16
Dhara, Basudeb. Generalized derivations acting on multilinear polynomials in prime rings. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 95-119. doi: 10.21136/CMJ.2017.0352-16
[1] Albaş, E.: Generalized derivations on ideals of prime rings. Miskolc Math. Notes 14 (2013), 3-9. | DOI | MR | JFM
[2] Ali, S., Huang, S.: On generalized Jordan $(\alpha,\beta)$-derivations that act as homomorphisms or anti-homomorphisms. J. Algebra Comput. Appl. (electronic only) 1 (2011), 13-19. | MR | JFM
[3] Argaç, N., Filippis, V. De: Actions of generalized derivations on multilinear polynomials in prime rings. Algebra Colloq. 18, Spec. Iss. 1 (2011), 955-964. | DOI | MR | JFM
[4] Asma, A., Rehman, N., Shakir, A.: On Lie ideals with derivations as homomorphisms and anti-homomorphisms. Acta Math. Hungar 101 (2003), 79-82. | DOI | MR | JFM
[5] Bell, H. E., Kappe, L. C.: Rings in which derivations satisfy certain algebraic conditions. Acta Math. Hung. 53 (1989), 339-346 \99999DOI99999 10.1007/BF01953371 \goodbreak. | DOI | MR | JFM
[6] Bergen, J., Herstein, I. N., Keer, J. W.: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259-267. | DOI | MR | JFM
[7] Carini, L., Filippis, V. De, Scudo, G.: Identities with product of generalized derivations of prime rings. Algebra Colloq. 20 (2013), 711-720. | DOI | MR | JFM
[8] Chuang, C.-L.: The additive subgroup generated by a polynomial. Isr. J. Math. 59 (1987), 98-106. | DOI | MR | JFM
[9] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | JFM
[10] Filippis, V. De: Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals. Acta Math. Sin., Engl. Ser. 25 (2009), 1965-1974. | DOI | MR | JFM
[11] Filippis, V. De, Vincenzo, O. M. Di: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Commun. Algebra 40 (2012), 1918-1932. | DOI | MR | JFM
[12] Filippis, V. De, Scudo, G.: Generalized derivations which extend the concept of Jordan homomorphism. Publ. Math. 86 (2015), 187-212. | DOI | MR | JFM
[13] Dhara, B.: Derivations with Engel conditions on multilinear polynomials in prime rings. Demonstr. Math. 42 (2009), 467-478. | MR | JFM
[14] Dhara, B.: Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings. Beitr. Algebra Geom. 53 (2012), 203-209. | DOI | MR | JFM
[15] Dhara, B., Huang, S., Pattanayak, A.: Generalized derivations and multilinear polynomials in prime rings. Bull. Malays. Math. Sci. Soc. 36 (2013), 1071-1081. | MR | JFM
[16] Dhara, B., Rehman, N. U., Raza, M. A.: Lie ideals and action of generalized derivations in rings. Miskolc Math. Notes 16 (2015), 769-779. | DOI | MR | JFM
[17] Dhara, B., Sahebi, S., Rehmani, V.: Generalized derivations as a generalization of Jordan homomorphisms acting on Lie ideals and right ideals. Math. Slovaca 65 (2015), 963-974. | DOI | MR | JFM
[18] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. | DOI | MR | JFM
[19] Gusić, I.: A note on generalized derivations of prime rings. Glas. Mat., III. Ser. 40 (2005), 47-49. | DOI | MR | JFM
[20] Jacobson, N.: Structure of Rings. American Mathematical Society Colloquium Publications 37, Revised edition American Mathematical Society, Providence (1956). | DOI | MR | JFM
[21] Kharchenko, V. K.: Differential identities of prime rings. Algebra Logic 17 (1978), 155-168. English. Russian original translation from Algebra Logika 17 1978 220-238. | DOI | MR | JFM
[22] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. | DOI | MR | JFM
[23] Lanski, C.: An Engel condition with derivation. Proc. Am. Math. Soc. 118 (1993), 731-734. | DOI | MR | JFM
[24] Lee, T.-K.: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. | MR | JFM
[25] Lee, T.-K.: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. | DOI | MR | JFM
[26] Lee, P.-H., Lee, T.-K.: Derivations with Engel conditions on multilinear polynomials. Proc. Am. Math. Soc. 124 (1996), 2625-2629. | DOI | MR | JFM
[27] Leron, U.: Nil and power central polynomials in rings. Trans. Am. Math. Soc. 202 (1975), 97-103. | DOI | MR | JFM
[28] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR | JFM
[29] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093-1100. | DOI | MR | JFM
[30] Rehman, N. U.: On generalized derivations as homomorphisms and anti-homomorphisms. Glas. Mat., III. Ser. 39 (2004), 27-30. | DOI | MR | JFM
[31] Wang, Y., You, H.: Derivations as homomorphisms or anti-homomorphisms on Lie ideals. Acta Math. Sin., Engl. Ser. 23 (2007), 1149-1152. | DOI | MR | JFM
Cité par Sources :