Generalized derivations acting on multilinear polynomials in prime rings
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 95-119 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a noncommutative prime ring of characteristic different from $2$ with Utumi quotient ring $U$ and extended centroid $C$, let $F$, $G$ and $H$ be three generalized derivations of $R$, $I$ an ideal of $R$ and $f(x_1,\ldots ,x_n)$ a multilinear polynomial over $C$ which is not central valued on $R$. If $$F(f(r))G(f(r))=H(f(r)^2)$$ for all $r=(r_1,\ldots ,r_n) \in I^n$, then one of the following conditions holds: \item {(1)} there exist $a\in C$ and $b\in U$ such that $F(x)=ax$, $G(x)=xb$ and $H(x)=xab$ for all $x\in R$; \item {(2)} there exist $a, b\in U$ such that $F(x)=xa$, $G(x)=bx$ and $H(x)=abx$ for all $x\in R$, with $ab\in C$; \item {(3)} there exist $b\in C$ and $a\in U$ such that $F(x)=ax$, $G(x)=bx$ and $H(x)=abx$ for all $x\in R$; \item {(4)} $f(x_1,\ldots ,x_n)^2$ is central valued on $R$ and one of the following conditions holds: \itemitem {(a)} there exist $a,b,p,p'\in U$ such that $F(x)=ax$, $G(x)=xb$ and $H(x)=px+xp'$ for all $x\in R$, with $ab=p+p'$; \itemitem {(b)} there exist $a,b,p,p'\in U$ such that $F(x)=xa$, $G(x)=bx$ and $H(x)=px+xp'$ for all $x\in R$, with $p+p'=ab\in C$.
Let $R$ be a noncommutative prime ring of characteristic different from $2$ with Utumi quotient ring $U$ and extended centroid $C$, let $F$, $G$ and $H$ be three generalized derivations of $R$, $I$ an ideal of $R$ and $f(x_1,\ldots ,x_n)$ a multilinear polynomial over $C$ which is not central valued on $R$. If $$F(f(r))G(f(r))=H(f(r)^2)$$ for all $r=(r_1,\ldots ,r_n) \in I^n$, then one of the following conditions holds: \item {(1)} there exist $a\in C$ and $b\in U$ such that $F(x)=ax$, $G(x)=xb$ and $H(x)=xab$ for all $x\in R$; \item {(2)} there exist $a, b\in U$ such that $F(x)=xa$, $G(x)=bx$ and $H(x)=abx$ for all $x\in R$, with $ab\in C$; \item {(3)} there exist $b\in C$ and $a\in U$ such that $F(x)=ax$, $G(x)=bx$ and $H(x)=abx$ for all $x\in R$; \item {(4)} $f(x_1,\ldots ,x_n)^2$ is central valued on $R$ and one of the following conditions holds: \itemitem {(a)} there exist $a,b,p,p'\in U$ such that $F(x)=ax$, $G(x)=xb$ and $H(x)=px+xp'$ for all $x\in R$, with $ab=p+p'$; \itemitem {(b)} there exist $a,b,p,p'\in U$ such that $F(x)=xa$, $G(x)=bx$ and $H(x)=px+xp'$ for all $x\in R$, with $p+p'=ab\in C$.
DOI : 10.21136/CMJ.2017.0352-16
Classification : 16N60, 16W25
Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring
@article{10_21136_CMJ_2017_0352_16,
     author = {Dhara, Basudeb},
     title = {Generalized derivations acting on multilinear polynomials in prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {95--119},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2017.0352-16},
     mrnumber = {3783587},
     zbl = {06861569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/}
}
TY  - JOUR
AU  - Dhara, Basudeb
TI  - Generalized derivations acting on multilinear polynomials in prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 95
EP  - 119
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/
DO  - 10.21136/CMJ.2017.0352-16
LA  - en
ID  - 10_21136_CMJ_2017_0352_16
ER  - 
%0 Journal Article
%A Dhara, Basudeb
%T Generalized derivations acting on multilinear polynomials in prime rings
%J Czechoslovak Mathematical Journal
%D 2018
%P 95-119
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/
%R 10.21136/CMJ.2017.0352-16
%G en
%F 10_21136_CMJ_2017_0352_16
Dhara, Basudeb. Generalized derivations acting on multilinear polynomials in prime rings. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 95-119. doi: 10.21136/CMJ.2017.0352-16

[1] Albaş, E.: Generalized derivations on ideals of prime rings. Miskolc Math. Notes 14 (2013), 3-9. | DOI | MR | JFM

[2] Ali, S., Huang, S.: On generalized Jordan $(\alpha,\beta)$-derivations that act as homomorphisms or anti-homomorphisms. J. Algebra Comput. Appl. (electronic only) 1 (2011), 13-19. | MR | JFM

[3] Argaç, N., Filippis, V. De: Actions of generalized derivations on multilinear polynomials in prime rings. Algebra Colloq. 18, Spec. Iss. 1 (2011), 955-964. | DOI | MR | JFM

[4] Asma, A., Rehman, N., Shakir, A.: On Lie ideals with derivations as homomorphisms and anti-homomorphisms. Acta Math. Hungar 101 (2003), 79-82. | DOI | MR | JFM

[5] Bell, H. E., Kappe, L. C.: Rings in which derivations satisfy certain algebraic conditions. Acta Math. Hung. 53 (1989), 339-346 \99999DOI99999 10.1007/BF01953371 \goodbreak. | DOI | MR | JFM

[6] Bergen, J., Herstein, I. N., Keer, J. W.: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259-267. | DOI | MR | JFM

[7] Carini, L., Filippis, V. De, Scudo, G.: Identities with product of generalized derivations of prime rings. Algebra Colloq. 20 (2013), 711-720. | DOI | MR | JFM

[8] Chuang, C.-L.: The additive subgroup generated by a polynomial. Isr. J. Math. 59 (1987), 98-106. | DOI | MR | JFM

[9] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | JFM

[10] Filippis, V. De: Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals. Acta Math. Sin., Engl. Ser. 25 (2009), 1965-1974. | DOI | MR | JFM

[11] Filippis, V. De, Vincenzo, O. M. Di: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Commun. Algebra 40 (2012), 1918-1932. | DOI | MR | JFM

[12] Filippis, V. De, Scudo, G.: Generalized derivations which extend the concept of Jordan homomorphism. Publ. Math. 86 (2015), 187-212. | DOI | MR | JFM

[13] Dhara, B.: Derivations with Engel conditions on multilinear polynomials in prime rings. Demonstr. Math. 42 (2009), 467-478. | MR | JFM

[14] Dhara, B.: Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings. Beitr. Algebra Geom. 53 (2012), 203-209. | DOI | MR | JFM

[15] Dhara, B., Huang, S., Pattanayak, A.: Generalized derivations and multilinear polynomials in prime rings. Bull. Malays. Math. Sci. Soc. 36 (2013), 1071-1081. | MR | JFM

[16] Dhara, B., Rehman, N. U., Raza, M. A.: Lie ideals and action of generalized derivations in rings. Miskolc Math. Notes 16 (2015), 769-779. | DOI | MR | JFM

[17] Dhara, B., Sahebi, S., Rehmani, V.: Generalized derivations as a generalization of Jordan homomorphisms acting on Lie ideals and right ideals. Math. Slovaca 65 (2015), 963-974. | DOI | MR | JFM

[18] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. | DOI | MR | JFM

[19] Gusić, I.: A note on generalized derivations of prime rings. Glas. Mat., III. Ser. 40 (2005), 47-49. | DOI | MR | JFM

[20] Jacobson, N.: Structure of Rings. American Mathematical Society Colloquium Publications 37, Revised edition American Mathematical Society, Providence (1956). | DOI | MR | JFM

[21] Kharchenko, V. K.: Differential identities of prime rings. Algebra Logic 17 (1978), 155-168. English. Russian original translation from Algebra Logika 17 1978 220-238. | DOI | MR | JFM

[22] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. | DOI | MR | JFM

[23] Lanski, C.: An Engel condition with derivation. Proc. Am. Math. Soc. 118 (1993), 731-734. | DOI | MR | JFM

[24] Lee, T.-K.: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. | MR | JFM

[25] Lee, T.-K.: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. | DOI | MR | JFM

[26] Lee, P.-H., Lee, T.-K.: Derivations with Engel conditions on multilinear polynomials. Proc. Am. Math. Soc. 124 (1996), 2625-2629. | DOI | MR | JFM

[27] Leron, U.: Nil and power central polynomials in rings. Trans. Am. Math. Soc. 202 (1975), 97-103. | DOI | MR | JFM

[28] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR | JFM

[29] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093-1100. | DOI | MR | JFM

[30] Rehman, N. U.: On generalized derivations as homomorphisms and anti-homomorphisms. Glas. Mat., III. Ser. 39 (2004), 27-30. | DOI | MR | JFM

[31] Wang, Y., You, H.: Derivations as homomorphisms or anti-homomorphisms on Lie ideals. Acta Math. Sin., Engl. Ser. 23 (2007), 1149-1152. | DOI | MR | JFM

Cité par Sources :