Generalized derivations acting on multilinear polynomials in prime rings
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 95-119.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a noncommutative prime ring of characteristic different from $2$ with Utumi quotient ring $U$ and extended centroid $C$, let $F$, $G$ and $H$ be three generalized derivations of $R$, $I$ an ideal of $R$ and $f(x_1,\ldots ,x_n)$ a multilinear polynomial over $C$ which is not central valued on $R$. If $$F(f(r))G(f(r))=H(f(r)^2)$$ for all $r=(r_1,\ldots ,r_n) \in I^n$, then one of the following conditions holds: \item {(1)} there exist $a\in C$ and $b\in U$ such that $F(x)=ax$, $G(x)=xb$ and $H(x)=xab$ for all $x\in R$; \item {(2)} there exist $a, b\in U$ such that $F(x)=xa$, $G(x)=bx$ and $H(x)=abx$ for all $x\in R$, with $ab\in C$; \item {(3)} there exist $b\in C$ and $a\in U$ such that $F(x)=ax$, $G(x)=bx$ and $H(x)=abx$ for all $x\in R$; \item {(4)} $f(x_1,\ldots ,x_n)^2$ is central valued on $R$ and one of the following conditions holds: \itemitem {(a)} there exist $a,b,p,p'\in U$ such that $F(x)=ax$, $G(x)=xb$ and $H(x)=px+xp'$ for all $x\in R$, with $ab=p+p'$; \itemitem {(b)} there exist $a,b,p,p'\in U$ such that $F(x)=xa$, $G(x)=bx$ and $H(x)=px+xp'$ for all $x\in R$, with $p+p'=ab\in C$.
DOI : 10.21136/CMJ.2017.0352-16
Classification : 16N60, 16W25
Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring
@article{10_21136_CMJ_2017_0352_16,
     author = {Dhara, Basudeb},
     title = {Generalized derivations acting on multilinear polynomials in prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {95--119},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2018},
     doi = {10.21136/CMJ.2017.0352-16},
     mrnumber = {3783587},
     zbl = {06861569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/}
}
TY  - JOUR
AU  - Dhara, Basudeb
TI  - Generalized derivations acting on multilinear polynomials in prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 95
EP  - 119
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/
DO  - 10.21136/CMJ.2017.0352-16
LA  - en
ID  - 10_21136_CMJ_2017_0352_16
ER  - 
%0 Journal Article
%A Dhara, Basudeb
%T Generalized derivations acting on multilinear polynomials in prime rings
%J Czechoslovak Mathematical Journal
%D 2018
%P 95-119
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/
%R 10.21136/CMJ.2017.0352-16
%G en
%F 10_21136_CMJ_2017_0352_16
Dhara, Basudeb. Generalized derivations acting on multilinear polynomials in prime rings. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 95-119. doi : 10.21136/CMJ.2017.0352-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0352-16/

Cité par Sources :