Keywords: stochastic permanence; persistent in mean; extinction; stationary distribution
@article{10_21136_CMJ_2017_0350_15,
author = {Zu, Li and Jiang, Daqing and O'Regan, Donal},
title = {Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation},
journal = {Czechoslovak Mathematical Journal},
pages = {867--890},
year = {2017},
volume = {67},
number = {4},
doi = {10.21136/CMJ.2017.0350-15},
mrnumber = {3736007},
zbl = {06819561},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0350-15/}
}
TY - JOUR AU - Zu, Li AU - Jiang, Daqing AU - O'Regan, Donal TI - Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation JO - Czechoslovak Mathematical Journal PY - 2017 SP - 867 EP - 890 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0350-15/ DO - 10.21136/CMJ.2017.0350-15 LA - en ID - 10_21136_CMJ_2017_0350_15 ER -
%0 Journal Article %A Zu, Li %A Jiang, Daqing %A O'Regan, Donal %T Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation %J Czechoslovak Mathematical Journal %D 2017 %P 867-890 %V 67 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0350-15/ %R 10.21136/CMJ.2017.0350-15 %G en %F 10_21136_CMJ_2017_0350_15
Zu, Li; Jiang, Daqing; O'Regan, Donal. Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 867-890. doi: 10.21136/CMJ.2017.0350-15
[1] Allen, L. J. S.: Persistence and extinction in single-species reaction-diffusion models. Bull. Math. Biol. 45 (1983), 209-227. | DOI | MR | JFM
[2] Cerrai, S.: Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach. Lecture Notes in Mathematics 1762, Springer, Berlin (2001). | DOI | MR | JFM
[3] Chen, L. S., Chen, J.: Nonlinear Biological Dynamical System. Science Press, Beijing (1993).
[4] Prato, G. Da: Kolmogorov Equations for Stochastic PDEs. Advanced Courses in Mathematics-CRM Barcelona, Birkhäuser, Basel (2004). | DOI | MR | JFM
[5] Gard, T. C.: Introduction to Stochastic Differential Equations. Pure and Applied Mathematics 114, Marcel Dekker, New York (1988). | DOI | MR | JFM
[6] Higham, D. J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43 (2001), 525-546. | DOI | MR | JFM
[7] Iked, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library 24, North-Holland, Amsterdam; Kodansha, Tokyo (1989). | MR | JFM
[8] Ji, C., Jiang, D., Liu, H., Yang, Q.: Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation. Math. Probl. Eng. 2010 (2010), Article ID 684926, 18 pages. | DOI | MR | JFM
[9] Ji, C., Jiang, D., Shi, N.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359 (2009), 482-498. | DOI | MR | JFM
[10] Jiang, D., Shi, N.: A note on nonautonomous logistic equation with random perturbation. J. Math. Anal. Appl. 303 (2005), 164-172. | DOI | MR | JFM
[11] Jiang, D., Shi, N., Li, X.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. J. Math. Anal. Appl. 340 (2008), 588-597. | DOI | MR | JFM
[12] Khas'minskiĭ, R.: Stochastic Stability of Differential Equations. Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, 7. Sijthoff Noordhoff, USA; Alphen aan den Rijn, The Netherlands (1980). | MR | JFM
[13] Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376 (2011), 11-28. | DOI | MR | JFM
[14] Liu, H., Yang, Q., Jiang, D.: The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences. Automatica 48 (2012), 820-825. | DOI | MR | JFM
[15] Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems. J. Math. Anal. Appl. 375 (2011), 443-457. | DOI | MR | JFM
[16] Lu, Z., Takeuchi, Y.: Global asymptotic behavior in single-species discrete diffusion systems. J. Math. Biol. 32 (1993), 67-77. | DOI | MR | JFM
[17] Mao, X.: Stochastic Differential Equations and Their Applications. Ellis Horwood Series in Mathematics and Its Applications, Horwood Publishing, Chichester (1997). | DOI | MR | JFM
[18] Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006). | DOI | MR | JFM
[19] Mao, X., Yuan, C., Zou, J.: Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl. 304 (2005), 296-320. | DOI | MR | JFM
[20] Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Biomathematics, vol. 10, Springer, Berlin (1980). | DOI | MR | JFM
[21] Strang, G.: Linear Algebra and Its Applications. Academic Press (A Subsidiary of Harcourt Brace Jovanovich, Publishers), New York (1980). | MR | JFM
[22] Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46 (2007), 1155-1179. | DOI | MR | JFM
Cité par Sources :