Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 867-890
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.
We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.
DOI : 10.21136/CMJ.2017.0350-15
Classification : 34F05, 92D25
Keywords: stochastic permanence; persistent in mean; extinction; stationary distribution
@article{10_21136_CMJ_2017_0350_15,
     author = {Zu, Li and Jiang, Daqing and O'Regan, Donal},
     title = {Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {867--890},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0350-15},
     mrnumber = {3736007},
     zbl = {06819561},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0350-15/}
}
TY  - JOUR
AU  - Zu, Li
AU  - Jiang, Daqing
AU  - O'Regan, Donal
TI  - Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 867
EP  - 890
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0350-15/
DO  - 10.21136/CMJ.2017.0350-15
LA  - en
ID  - 10_21136_CMJ_2017_0350_15
ER  - 
%0 Journal Article
%A Zu, Li
%A Jiang, Daqing
%A O'Regan, Donal
%T Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation
%J Czechoslovak Mathematical Journal
%D 2017
%P 867-890
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0350-15/
%R 10.21136/CMJ.2017.0350-15
%G en
%F 10_21136_CMJ_2017_0350_15
Zu, Li; Jiang, Daqing; O'Regan, Donal. Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 867-890. doi: 10.21136/CMJ.2017.0350-15

[1] Allen, L. J. S.: Persistence and extinction in single-species reaction-diffusion models. Bull. Math. Biol. 45 (1983), 209-227. | DOI | MR | JFM

[2] Cerrai, S.: Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach. Lecture Notes in Mathematics 1762, Springer, Berlin (2001). | DOI | MR | JFM

[3] Chen, L. S., Chen, J.: Nonlinear Biological Dynamical System. Science Press, Beijing (1993).

[4] Prato, G. Da: Kolmogorov Equations for Stochastic PDEs. Advanced Courses in Mathematics-CRM Barcelona, Birkhäuser, Basel (2004). | DOI | MR | JFM

[5] Gard, T. C.: Introduction to Stochastic Differential Equations. Pure and Applied Mathematics 114, Marcel Dekker, New York (1988). | DOI | MR | JFM

[6] Higham, D. J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43 (2001), 525-546. | DOI | MR | JFM

[7] Iked, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library 24, North-Holland, Amsterdam; Kodansha, Tokyo (1989). | MR | JFM

[8] Ji, C., Jiang, D., Liu, H., Yang, Q.: Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation. Math. Probl. Eng. 2010 (2010), Article ID 684926, 18 pages. | DOI | MR | JFM

[9] Ji, C., Jiang, D., Shi, N.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359 (2009), 482-498. | DOI | MR | JFM

[10] Jiang, D., Shi, N.: A note on nonautonomous logistic equation with random perturbation. J. Math. Anal. Appl. 303 (2005), 164-172. | DOI | MR | JFM

[11] Jiang, D., Shi, N., Li, X.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. J. Math. Anal. Appl. 340 (2008), 588-597. | DOI | MR | JFM

[12] Khas'minskiĭ, R.: Stochastic Stability of Differential Equations. Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, 7. Sijthoff Noordhoff, USA; Alphen aan den Rijn, The Netherlands (1980). | MR | JFM

[13] Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376 (2011), 11-28. | DOI | MR | JFM

[14] Liu, H., Yang, Q., Jiang, D.: The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences. Automatica 48 (2012), 820-825. | DOI | MR | JFM

[15] Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems. J. Math. Anal. Appl. 375 (2011), 443-457. | DOI | MR | JFM

[16] Lu, Z., Takeuchi, Y.: Global asymptotic behavior in single-species discrete diffusion systems. J. Math. Biol. 32 (1993), 67-77. | DOI | MR | JFM

[17] Mao, X.: Stochastic Differential Equations and Their Applications. Ellis Horwood Series in Mathematics and Its Applications, Horwood Publishing, Chichester (1997). | DOI | MR | JFM

[18] Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006). | DOI | MR | JFM

[19] Mao, X., Yuan, C., Zou, J.: Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl. 304 (2005), 296-320. | DOI | MR | JFM

[20] Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Biomathematics, vol. 10, Springer, Berlin (1980). | DOI | MR | JFM

[21] Strang, G.: Linear Algebra and Its Applications. Academic Press (A Subsidiary of Harcourt Brace Jovanovich, Publishers), New York (1980). | MR | JFM

[22] Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46 (2007), 1155-1179. | DOI | MR | JFM

Cité par Sources :