(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1031-1048 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\Lambda =\left (\begin {smallmatrix} A\\ 0 \end {smallmatrix}\right )$ be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective $\Lambda $-modules under the condition that $M$ is a cocompatible $(A,B)$-bimodule, we establish a recollement of the stable category $\overline {\rm Ginj(\Lambda )}$. We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over $\Lambda $.
Let $\Lambda =\left (\begin {smallmatrix} A\\ 0 \end {smallmatrix}\right )$ be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective $\Lambda $-modules under the condition that $M$ is a cocompatible $(A,B)$-bimodule, we establish a recollement of the stable category $\overline {\rm Ginj(\Lambda )}$. We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over $\Lambda $.
DOI : 10.21136/CMJ.2017.0346-16
Classification : 16E65, 18E30, 18G25
Keywords: (strongly) Gorenstein injective module; upper triangular matrix Artin algebra; triangulated category; recollement
@article{10_21136_CMJ_2017_0346_16,
     author = {Wang, Chao and Yang, Xiaoyan},
     title = {(Strongly) {Gorenstein} injective modules over upper triangular matrix {Artin} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1031--1048},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0346-16},
     mrnumber = {3736017},
     zbl = {06819570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0346-16/}
}
TY  - JOUR
AU  - Wang, Chao
AU  - Yang, Xiaoyan
TI  - (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 1031
EP  - 1048
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0346-16/
DO  - 10.21136/CMJ.2017.0346-16
LA  - en
ID  - 10_21136_CMJ_2017_0346_16
ER  - 
%0 Journal Article
%A Wang, Chao
%A Yang, Xiaoyan
%T (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras
%J Czechoslovak Mathematical Journal
%D 2017
%P 1031-1048
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0346-16/
%R 10.21136/CMJ.2017.0346-16
%G en
%F 10_21136_CMJ_2017_0346_16
Wang, Chao; Yang, Xiaoyan. (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1031-1048. doi: 10.21136/CMJ.2017.0346-16

[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13, Springer, New York (1992). | DOI | MR | JFM

[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[3] Beligiannis, A.: On algebras of finite Cohen-Macaulay type. Adv. Math. 226 (2011), 1973-2019. | DOI | MR | JFM

[4] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective and flat modules. J. Pure Appl. Algebra 210 (2007), 437-445. | DOI | MR | JFM

[5] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | JFM

[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[7] Gao, N., Zhang, P.: Strongly Gorenstein projective modules over upper triangular matrix Artin algebras. Commun. Algebra 37 (2009), 4259-4268. | DOI | MR | JFM

[8] Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1988). | DOI | MR | JFM

[9] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM

[10] Wang, C.: Gorenstein injective modules over upper triangular matrix Artin algebras. J. Shandong Univ., Nat. Sci. 51 (2016), 89-93 Chinese. | DOI | MR | JFM

[11] Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules. J. Algebra 320 (2008), 2659-2674. | DOI | MR | JFM

[12] Zhang, P.: Gorenstein-projective modules and symmetric recollements. J. Algebra 388 (2013), 65-80. | DOI | MR | JFM

Cité par Sources :