Keywords: Toeplitz operator; projective space
@article{10_21136_CMJ_2017_0293_16,
author = {Quiroga-Barranco, Raul and Sanchez-Nungaray, Armando},
title = {Separately radial and radial {Toeplitz} operators on the projective space and representation theory},
journal = {Czechoslovak Mathematical Journal},
pages = {1005--1020},
year = {2017},
volume = {67},
number = {4},
doi = {10.21136/CMJ.2017.0293-16},
mrnumber = {3736015},
zbl = {06819569},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0293-16/}
}
TY - JOUR AU - Quiroga-Barranco, Raul AU - Sanchez-Nungaray, Armando TI - Separately radial and radial Toeplitz operators on the projective space and representation theory JO - Czechoslovak Mathematical Journal PY - 2017 SP - 1005 EP - 1020 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0293-16/ DO - 10.21136/CMJ.2017.0293-16 LA - en ID - 10_21136_CMJ_2017_0293_16 ER -
%0 Journal Article %A Quiroga-Barranco, Raul %A Sanchez-Nungaray, Armando %T Separately radial and radial Toeplitz operators on the projective space and representation theory %J Czechoslovak Mathematical Journal %D 2017 %P 1005-1020 %V 67 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0293-16/ %R 10.21136/CMJ.2017.0293-16 %G en %F 10_21136_CMJ_2017_0293_16
Quiroga-Barranco, Raul; Sanchez-Nungaray, Armando. Separately radial and radial Toeplitz operators on the projective space and representation theory. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 1005-1020. doi: 10.21136/CMJ.2017.0293-16
[1] Dawson, M., Ólafsson, G., Quiroga-Barranco, R.: Commuting Toeplitz operators on bounded symmetric domains and multiplicity-free restrictions of holomorphic discrete series. J. Funct. Anal. 268 (2015), 1711-1732. | DOI | MR | JFM
[2] Engliš, M.: Density of algebras generated by Toeplitz operators on Bergman spaces. Ark. Mat. 30 (1992), 227-243. | DOI | MR | JFM
[3] Goodman, R., Wallach, N. R.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics 255, Springer, New York (2009). | DOI | MR | JFM
[4] Grudsky, S., Karapetyants, A., Vasilevski, N.: Toeplitz operators on the unit ball in $\mathbb C^n$ with radial symbols. J. Oper. Theory 49 (2003), 325-346. | MR | JFM
[5] Grudsky, S., Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators and quantization on the unit disk. J. Funct. Anal. 234 (2006), 1-44. | DOI | MR | JFM
[6] Morales-Ramos, M. A., Sánchez-Nungaray, A., Ramírez-Ortega, J.: Toeplitz operators with quasi-separately radial symbols on the complex projective space. Bol. Soc. Mat. Mex., III. Ser. 22 (2016), 213-227. | DOI | MR | JFM
[7] Quiroga-Barranco, R.: Separately radial and radial Toeplitz operators on the unit ball and representation theory. Bol. Soc. Mat. Mex., III. Ser. 22 (2016), 605-623. | DOI | MR | JFM
[8] Quiroga-Barranco, R., Sanchez-Nungaray, A.: Commutative $C^*$-algebras of Toeplitz operators on complex projective spaces. Integral Equations Oper. Theory 71 (2011), 225-243. | DOI | MR | JFM
[9] Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators on the unit ball, I.: Bargmann-type transforms and spectral representations of Toeplitz operators. Integral Equations Oper. Theory 59 (2007), 379-419. | DOI | MR | JFM
[10] Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators on the unit ball, II.: Geometry of the level sets of symbols. Integral Equations Oper. Theory 60 (2008), 89-132. | DOI | MR | JFM
Cité par Sources :