On the proof of Erdős' inequality
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 967-979
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Using undergraduate calculus, we give a direct elementary proof of a sharp Markov-type inequality $\|p'\|_{[-1,1]}\leq \frac 12\|p\|_{[-1,1]}$ for a constrained polynomial $p$ of degree at most $n$, initially claimed by P. Erd\H os, which is different from the one in the paper of T. Erdélyi (2015). Whereafter, we give the situations on which the equality holds. On the basis of this inequality, we study the monotone polynomial which has only real zeros all but one outside of the interval $(-1,1)$ and establish a new asymptotically sharp inequality.
Using undergraduate calculus, we give a direct elementary proof of a sharp Markov-type inequality $\|p'\|_{[-1,1]}\leq \frac 12\|p\|_{[-1,1]}$ for a constrained polynomial $p$ of degree at most $n$, initially claimed by P. Erd\H os, which is different from the one in the paper of T. Erdélyi (2015). Whereafter, we give the situations on which the equality holds. On the basis of this inequality, we study the monotone polynomial which has only real zeros all but one outside of the interval $(-1,1)$ and establish a new asymptotically sharp inequality.
DOI : 10.21136/CMJ.2017.0256-16
Classification : 26D05, 41A17, 42A05
Keywords: polynomial; Erd\H os' inequality; undergraduate calculus; monotone polynomial
@article{10_21136_CMJ_2017_0256_16,
     author = {Zhu, Lai-Yi and Zhou, Da-Peng},
     title = {On the proof of {Erd\H{o}s'} inequality},
     journal = {Czechoslovak Mathematical Journal},
     pages = {967--979},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0256-16},
     mrnumber = {3736012},
     zbl = {06819566},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0256-16/}
}
TY  - JOUR
AU  - Zhu, Lai-Yi
AU  - Zhou, Da-Peng
TI  - On the proof of Erdős' inequality
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 967
EP  - 979
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0256-16/
DO  - 10.21136/CMJ.2017.0256-16
LA  - en
ID  - 10_21136_CMJ_2017_0256_16
ER  - 
%0 Journal Article
%A Zhu, Lai-Yi
%A Zhou, Da-Peng
%T On the proof of Erdős' inequality
%J Czechoslovak Mathematical Journal
%D 2017
%P 967-979
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0256-16/
%R 10.21136/CMJ.2017.0256-16
%G en
%F 10_21136_CMJ_2017_0256_16
Zhu, Lai-Yi; Zhou, Da-Peng. On the proof of Erdős' inequality. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 967-979. doi: 10.21136/CMJ.2017.0256-16

[1] Ankeny, N. C., Rivlin, T. J.: On a theorem of S. Bernstern. Pac. J. Math., Suppl. II 5 (1955), 849-852. | DOI | MR | JFM

[2] Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Graduate Texts in Mathematics 161, Springer, New York (1995). | DOI | MR | JFM

[3] DeVore, R. A., Lorentz, G. G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften 303, Springer, Berlin (1993). | DOI | MR | JFM

[4] Erdélyi, T.: Inequalities for Lorentz polynomials. J. Approx. Theory 192 (2015), 297-305. | DOI | MR | JFM

[5] Erdős, P.: On extremal properties of the derivatives of polynomials. Ann. of Math. (2) 41 (1940), 310-313. | DOI | MR | JFM

[6] Govil, N. K.: On the derivative of a polynomial. Proc. Am. Math. Soc. 41 (1973), 543-546. | DOI | MR | JFM

[7] Lax, P. D.: Proof of a conjecture of P. Erdős on the derivative of a polynomial. Bull. Am. Math. Soc. 50 (1944), 509-513. | DOI | MR | JFM

[8] Malik, M. A.: On the derivative of a polynomial. J. Lond. Math. Soc., II. Ser. 1 (1969), 57-60. | DOI | MR | JFM

Cité par Sources :