Keywords: polynomial; Erd\H os' inequality; undergraduate calculus; monotone polynomial
@article{10_21136_CMJ_2017_0256_16,
author = {Zhu, Lai-Yi and Zhou, Da-Peng},
title = {On the proof of {Erd\H{o}s'} inequality},
journal = {Czechoslovak Mathematical Journal},
pages = {967--979},
year = {2017},
volume = {67},
number = {4},
doi = {10.21136/CMJ.2017.0256-16},
mrnumber = {3736012},
zbl = {06819566},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0256-16/}
}
TY - JOUR AU - Zhu, Lai-Yi AU - Zhou, Da-Peng TI - On the proof of Erdős' inequality JO - Czechoslovak Mathematical Journal PY - 2017 SP - 967 EP - 979 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0256-16/ DO - 10.21136/CMJ.2017.0256-16 LA - en ID - 10_21136_CMJ_2017_0256_16 ER -
Zhu, Lai-Yi; Zhou, Da-Peng. On the proof of Erdős' inequality. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 967-979. doi: 10.21136/CMJ.2017.0256-16
[1] Ankeny, N. C., Rivlin, T. J.: On a theorem of S. Bernstern. Pac. J. Math., Suppl. II 5 (1955), 849-852. | DOI | MR | JFM
[2] Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Graduate Texts in Mathematics 161, Springer, New York (1995). | DOI | MR | JFM
[3] DeVore, R. A., Lorentz, G. G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften 303, Springer, Berlin (1993). | DOI | MR | JFM
[4] Erdélyi, T.: Inequalities for Lorentz polynomials. J. Approx. Theory 192 (2015), 297-305. | DOI | MR | JFM
[5] Erdős, P.: On extremal properties of the derivatives of polynomials. Ann. of Math. (2) 41 (1940), 310-313. | DOI | MR | JFM
[6] Govil, N. K.: On the derivative of a polynomial. Proc. Am. Math. Soc. 41 (1973), 543-546. | DOI | MR | JFM
[7] Lax, P. D.: Proof of a conjecture of P. Erdős on the derivative of a polynomial. Bull. Am. Math. Soc. 50 (1944), 509-513. | DOI | MR | JFM
[8] Malik, M. A.: On the derivative of a polynomial. J. Lond. Math. Soc., II. Ser. 1 (1969), 57-60. | DOI | MR | JFM
Cité par Sources :