Keywords: related set; basis; derivation
@article{10_21136_CMJ_2017_0253_16,
author = {Ren, Bin and Zhu, Lin Sheng},
title = {Classification of 2-step nilpotent {Lie} algebras of dimension 9 with 2-dimensional center},
journal = {Czechoslovak Mathematical Journal},
pages = {953--965},
year = {2017},
volume = {67},
number = {4},
doi = {10.21136/CMJ.2017.0253-16},
mrnumber = {3736011},
zbl = {06819565},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0253-16/}
}
TY - JOUR AU - Ren, Bin AU - Zhu, Lin Sheng TI - Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center JO - Czechoslovak Mathematical Journal PY - 2017 SP - 953 EP - 965 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0253-16/ DO - 10.21136/CMJ.2017.0253-16 LA - en ID - 10_21136_CMJ_2017_0253_16 ER -
%0 Journal Article %A Ren, Bin %A Zhu, Lin Sheng %T Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center %J Czechoslovak Mathematical Journal %D 2017 %P 953-965 %V 67 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0253-16/ %R 10.21136/CMJ.2017.0253-16 %G en %F 10_21136_CMJ_2017_0253_16
Ren, Bin; Zhu, Lin Sheng. Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 953-965. doi: 10.21136/CMJ.2017.0253-16
[1] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie filiformes de dimension 8. Arch. Math. 50 (1988), 511-525 French. | DOI | MR | JFM
[2] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie nilpotentes complexes de dimension 7. Arch. Math. 52 (1989), 175-185 French. | DOI | MR | JFM
[3] Galitski, L. Y., Timashev, D. A.: On classification of metabelian Lie algebras. J. Lie Theory 9 (1999), 125-156. | MR | JFM
[4] Gauger, M. A.: On the classification of metabelian Lie algebras. Trans. Am. Math. Soc. 179 (1973), 293-329. | DOI | MR | JFM
[5] Gong, M.-P.: Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Fields and R). Ph.D. Thesis, University of Waterloo, Waterloo (1998). | MR
[6] Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and Its Applications 361, Kluwer Academic Publishers, Dordrecht (1996). | DOI | MR | JFM
[7] Goze, M., Remm, E.: $k$-step nilpotent Lie algebras. Georgian Math. J. 22 (2015), 219-234. | DOI | MR | JFM
[8] Khuhirun, B., Misra, K. C., Stitzinger, E.: On nilpotent Lie algebras of small breadth. J. Algebra 444 (2015), 328-338. | DOI | MR | JFM
[9] Leger, G., Luks, E.: On derivations and holomorphs of nilpotent Lie algebras. Nagoya Math. J. 44 (1971), 39-50. | DOI | MR | JFM
[10] Remm, E.: Breadth and characteristic sequence of nilpotent Lie algebras. Commun. Algebra 45 (2017), 2956-2966. | DOI | MR
[11] Ren, B., Meng, D. J.: Some completable 2-step nilpotent Lie algebras I. Linear Algebra Appl. 338 (2001), 77-98. | MR | JFM
[12] Ren, B., Zhou, L. S.: Classification of 2-step nilpotent Lie algebras of dimension 8 with 2-dimensional center. Commun. Algebra 39 (2011), 2068-2081. | DOI | MR | JFM
[13] Revoy, P.: Algèbres de Lie métabéliennes. Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. | DOI | MR | JFM
[14] Santharoubane, L. J.: Kac-Moody Lie algebras and the classification of nilpotent Lie algebras of maximal rank. Can. J. Math. 34 (1982), 1215-1239. | DOI | MR | JFM
[15] Seeley, C.: 7-dimensional nilpotent Lie algebras. Trans. Am. Math. Soc. 335 (1993), 479-496. | DOI | MR | JFM
[16] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null. Ph.D. Thesis, University of Leipzig, Leipzig German (1891).
[17] Yan, Z., Deng, S.: The classification of two step nilpotent complex Lie algebras of dimension 8. Czech. Math. J. 63 (2013), 847-863. | DOI | MR | JFM
Cité par Sources :