Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 953-965 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A Lie algebra $L$ is called 2-step nilpotent if $L$ is not abelian and $[L, L]$ lies in the center of $L$. 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center.
A Lie algebra $L$ is called 2-step nilpotent if $L$ is not abelian and $[L, L]$ lies in the center of $L$. 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center.
DOI : 10.21136/CMJ.2017.0253-16
Classification : 17B05, 17B30
Keywords: related set; basis; derivation
@article{10_21136_CMJ_2017_0253_16,
     author = {Ren, Bin and Zhu, Lin Sheng},
     title = {Classification of 2-step nilpotent {Lie} algebras of dimension 9 with 2-dimensional center},
     journal = {Czechoslovak Mathematical Journal},
     pages = {953--965},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0253-16},
     mrnumber = {3736011},
     zbl = {06819565},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0253-16/}
}
TY  - JOUR
AU  - Ren, Bin
AU  - Zhu, Lin Sheng
TI  - Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 953
EP  - 965
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0253-16/
DO  - 10.21136/CMJ.2017.0253-16
LA  - en
ID  - 10_21136_CMJ_2017_0253_16
ER  - 
%0 Journal Article
%A Ren, Bin
%A Zhu, Lin Sheng
%T Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center
%J Czechoslovak Mathematical Journal
%D 2017
%P 953-965
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0253-16/
%R 10.21136/CMJ.2017.0253-16
%G en
%F 10_21136_CMJ_2017_0253_16
Ren, Bin; Zhu, Lin Sheng. Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 953-965. doi: 10.21136/CMJ.2017.0253-16

[1] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie filiformes de dimension 8. Arch. Math. 50 (1988), 511-525 French. | DOI | MR | JFM

[2] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie nilpotentes complexes de dimension 7. Arch. Math. 52 (1989), 175-185 French. | DOI | MR | JFM

[3] Galitski, L. Y., Timashev, D. A.: On classification of metabelian Lie algebras. J. Lie Theory 9 (1999), 125-156. | MR | JFM

[4] Gauger, M. A.: On the classification of metabelian Lie algebras. Trans. Am. Math. Soc. 179 (1973), 293-329. | DOI | MR | JFM

[5] Gong, M.-P.: Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Fields and R). Ph.D. Thesis, University of Waterloo, Waterloo (1998). | MR

[6] Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and Its Applications 361, Kluwer Academic Publishers, Dordrecht (1996). | DOI | MR | JFM

[7] Goze, M., Remm, E.: $k$-step nilpotent Lie algebras. Georgian Math. J. 22 (2015), 219-234. | DOI | MR | JFM

[8] Khuhirun, B., Misra, K. C., Stitzinger, E.: On nilpotent Lie algebras of small breadth. J. Algebra 444 (2015), 328-338. | DOI | MR | JFM

[9] Leger, G., Luks, E.: On derivations and holomorphs of nilpotent Lie algebras. Nagoya Math. J. 44 (1971), 39-50. | DOI | MR | JFM

[10] Remm, E.: Breadth and characteristic sequence of nilpotent Lie algebras. Commun. Algebra 45 (2017), 2956-2966. | DOI | MR

[11] Ren, B., Meng, D. J.: Some completable 2-step nilpotent Lie algebras I. Linear Algebra Appl. 338 (2001), 77-98. | MR | JFM

[12] Ren, B., Zhou, L. S.: Classification of 2-step nilpotent Lie algebras of dimension 8 with 2-dimensional center. Commun. Algebra 39 (2011), 2068-2081. | DOI | MR | JFM

[13] Revoy, P.: Algèbres de Lie métabéliennes. Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. | DOI | MR | JFM

[14] Santharoubane, L. J.: Kac-Moody Lie algebras and the classification of nilpotent Lie algebras of maximal rank. Can. J. Math. 34 (1982), 1215-1239. | DOI | MR | JFM

[15] Seeley, C.: 7-dimensional nilpotent Lie algebras. Trans. Am. Math. Soc. 335 (1993), 479-496. | DOI | MR | JFM

[16] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null. Ph.D. Thesis, University of Leipzig, Leipzig German (1891).

[17] Yan, Z., Deng, S.: The classification of two step nilpotent complex Lie algebras of dimension 8. Czech. Math. J. 63 (2013), 847-863. | DOI | MR | JFM

Cité par Sources :