The Cauchy problem for the liquid crystals system in the critical Besov space with negative index
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 37-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space $\dot {B}_{p,1}^{n/p-1}(\mathbb R^n)\times \dot {B}_{p,1}^{n/p}(\mathbb R^n)$ with $n
The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space $\dot {B}_{p,1}^{n/p-1}(\mathbb R^n)\times \dot {B}_{p,1}^{n/p}(\mathbb R^n)$ with $n$ is established by using the heat semigroup theory and the Littlewood-Paley theory. The global well-posedness for the system is obtained with small initial datum by using the fixed point theorem. The blow-up results for strong solutions to the system are also analysed.
DOI : 10.21136/CMJ.2017.0249-15
Classification : 35B44, 35Q35, 76A15
Keywords: liquid crystals system; critical Besov space; negative index; well-posedness; blow-up
@article{10_21136_CMJ_2017_0249_15,
     author = {Ming, Sen and Yang, Han and Chen, Zili and Yong, Ls},
     title = {The {Cauchy} problem for the liquid crystals system in the critical {Besov} space with negative index},
     journal = {Czechoslovak Mathematical Journal},
     pages = {37--55},
     year = {2017},
     volume = {67},
     number = {1},
     doi = {10.21136/CMJ.2017.0249-15},
     mrnumber = {3632997},
     zbl = {06738503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0249-15/}
}
TY  - JOUR
AU  - Ming, Sen
AU  - Yang, Han
AU  - Chen, Zili
AU  - Yong, Ls
TI  - The Cauchy problem for the liquid crystals system in the critical Besov space with negative index
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 37
EP  - 55
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0249-15/
DO  - 10.21136/CMJ.2017.0249-15
LA  - en
ID  - 10_21136_CMJ_2017_0249_15
ER  - 
%0 Journal Article
%A Ming, Sen
%A Yang, Han
%A Chen, Zili
%A Yong, Ls
%T The Cauchy problem for the liquid crystals system in the critical Besov space with negative index
%J Czechoslovak Mathematical Journal
%D 2017
%P 37-55
%V 67
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0249-15/
%R 10.21136/CMJ.2017.0249-15
%G en
%F 10_21136_CMJ_2017_0249_15
Ming, Sen; Yang, Han; Chen, Zili; Yong, Ls. The Cauchy problem for the liquid crystals system in the critical Besov space with negative index. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 37-55. doi: 10.21136/CMJ.2017.0249-15

[1] Abidi, H.: Equation de Navier-Stokes avec densité et viscosité variables dans l'espace critique. Rev. Mat. Iberoam. 23 (2007), 537-586 French. | DOI | MR | JFM

[2] Abidi, H., Gui, G., Zhang, P.: On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces. Arch. Ration. Mech. Anal. 204 (2012), 189-230. | DOI | MR | JFM

[3] Abidi, H., Zhang, P.: On the global well-posedness of 2-D density-dependent Navier-Stokes system with variable viscosity. Available at Arxiv:1301.2371. | MR

[4] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften 343, Springer, Heidelberg (2011). | DOI | MR | JFM

[5] Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Handbook of Mathematical Fluid Dynamics. Vol. III Elsevier/North Holland, Amsterdam S. Friedlander et al. (2004), 161-244. | DOI | MR | JFM

[6] Cavaterra, C., Rocca, E., Wu, H.: Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows. J. Differ. Equations 255 (2013), 24-57. | DOI | MR | JFM

[7] Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equations 252 (2012), 2698-2724. | DOI | MR | JFM

[8] Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equations 26 (2001), 1183-1233. | DOI | MR | JFM

[9] Danchin, R., Mucha, P. B.: A Lagrangian approach for the incompressible Navier-Stokes equations with variable density. Commun. Pure Appl. Math. 65 (2012), 1458-1480. | DOI | MR | JFM

[10] Du, Y., Wang, K.: Regularity of the solutions to the liquid crystal equations with small rough data. J. Differ. Equations 256 (2014), 65-81. | DOI | MR | JFM

[11] Ericksen, J. L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9 (1962), 371-378. | DOI | MR | JFM

[12] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16 (1964), 269-315. | DOI | MR | JFM

[13] Hao, Y., Liu, X.: The existence and blow-up criterion of liquid crystals system in critical Besov space. Commun. Pure Appl. Anal. 13 (2014), 225-236. | DOI | MR | JFM

[14] Hong, M.-C.: Global existence of solutions of the simplified Ericksen-Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40 (2011), 15-36. | DOI | MR | JFM

[15] Huang, J., Paicu, M., Zhang, P.: Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity. J. Math. Pures Appl. (9) 100 (2013), 806-831. | DOI | MR | JFM

[16] Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214 (2014), 403-451. | DOI | MR | JFM

[17] Li, X., Wang, D.: Global solution to the incompressible flow of liquid crystals. J. Differ. Equations 252 (2012), 745-767. | DOI | MR | JFM

[18] Lin, F.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Anal. 42 (1989), 789-814. | DOI | MR | JFM

[19] Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197 (2010), 297-336. | DOI | MR | JFM

[20] Lin, F., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. 2 (1996), 1-22. | DOI | MR | JFM

[21] Lin, F., Liu, C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154 (2000), 135-156. | DOI | MR | JFM

[22] Lin, J., Ding, S.: On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces. Math. Methods Appl. Sci. 35 (2012), 158-173. | DOI | MR | JFM

[23] Liu, Q., Zhang, T., Zhao, J.: Global solutions to the 3D incompressible nematic liquid crystal system. J. Differ. Equations 258 (2015), 1519-1547. | DOI | MR | JFM

[24] Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density. Commun. Partial Differ. Equations 38 (2013), 1208-1234. | DOI | MR | JFM

[25] Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200 (2011), 1-19. | DOI | MR | JFM

[26] Xu, F., Hao, S., Yuan, J.: Well-posedness for the density-dependent incompressible flow of liquid crystals. Math. Methods. Appl. Sci. 38 (2015), 2680-2702. | DOI | MR | JFM

[27] Xu, X., Zhang, Z.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differ. Equations 252 (2012), 1169-1181. | DOI | MR | JFM

[28] Zhao, J., Liu, Q., Cui, S.: Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Commun. Pure Appl. Anal. 12 (2013), 341-357. | DOI | MR | JFM

Cité par Sources :