Keywords: liquid crystals system; critical Besov space; negative index; well-posedness; blow-up
@article{10_21136_CMJ_2017_0249_15,
author = {Ming, Sen and Yang, Han and Chen, Zili and Yong, Ls},
title = {The {Cauchy} problem for the liquid crystals system in the critical {Besov} space with negative index},
journal = {Czechoslovak Mathematical Journal},
pages = {37--55},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0249-15},
mrnumber = {3632997},
zbl = {06738503},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0249-15/}
}
TY - JOUR AU - Ming, Sen AU - Yang, Han AU - Chen, Zili AU - Yong, Ls TI - The Cauchy problem for the liquid crystals system in the critical Besov space with negative index JO - Czechoslovak Mathematical Journal PY - 2017 SP - 37 EP - 55 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0249-15/ DO - 10.21136/CMJ.2017.0249-15 LA - en ID - 10_21136_CMJ_2017_0249_15 ER -
%0 Journal Article %A Ming, Sen %A Yang, Han %A Chen, Zili %A Yong, Ls %T The Cauchy problem for the liquid crystals system in the critical Besov space with negative index %J Czechoslovak Mathematical Journal %D 2017 %P 37-55 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0249-15/ %R 10.21136/CMJ.2017.0249-15 %G en %F 10_21136_CMJ_2017_0249_15
Ming, Sen; Yang, Han; Chen, Zili; Yong, Ls. The Cauchy problem for the liquid crystals system in the critical Besov space with negative index. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 37-55. doi: 10.21136/CMJ.2017.0249-15
[1] Abidi, H.: Equation de Navier-Stokes avec densité et viscosité variables dans l'espace critique. Rev. Mat. Iberoam. 23 (2007), 537-586 French. | DOI | MR | JFM
[2] Abidi, H., Gui, G., Zhang, P.: On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces. Arch. Ration. Mech. Anal. 204 (2012), 189-230. | DOI | MR | JFM
[3] Abidi, H., Zhang, P.: On the global well-posedness of 2-D density-dependent Navier-Stokes system with variable viscosity. Available at Arxiv:1301.2371. | MR
[4] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften 343, Springer, Heidelberg (2011). | DOI | MR | JFM
[5] Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Handbook of Mathematical Fluid Dynamics. Vol. III Elsevier/North Holland, Amsterdam S. Friedlander et al. (2004), 161-244. | DOI | MR | JFM
[6] Cavaterra, C., Rocca, E., Wu, H.: Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows. J. Differ. Equations 255 (2013), 24-57. | DOI | MR | JFM
[7] Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equations 252 (2012), 2698-2724. | DOI | MR | JFM
[8] Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equations 26 (2001), 1183-1233. | DOI | MR | JFM
[9] Danchin, R., Mucha, P. B.: A Lagrangian approach for the incompressible Navier-Stokes equations with variable density. Commun. Pure Appl. Math. 65 (2012), 1458-1480. | DOI | MR | JFM
[10] Du, Y., Wang, K.: Regularity of the solutions to the liquid crystal equations with small rough data. J. Differ. Equations 256 (2014), 65-81. | DOI | MR | JFM
[11] Ericksen, J. L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9 (1962), 371-378. | DOI | MR | JFM
[12] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16 (1964), 269-315. | DOI | MR | JFM
[13] Hao, Y., Liu, X.: The existence and blow-up criterion of liquid crystals system in critical Besov space. Commun. Pure Appl. Anal. 13 (2014), 225-236. | DOI | MR | JFM
[14] Hong, M.-C.: Global existence of solutions of the simplified Ericksen-Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40 (2011), 15-36. | DOI | MR | JFM
[15] Huang, J., Paicu, M., Zhang, P.: Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity. J. Math. Pures Appl. (9) 100 (2013), 806-831. | DOI | MR | JFM
[16] Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214 (2014), 403-451. | DOI | MR | JFM
[17] Li, X., Wang, D.: Global solution to the incompressible flow of liquid crystals. J. Differ. Equations 252 (2012), 745-767. | DOI | MR | JFM
[18] Lin, F.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Anal. 42 (1989), 789-814. | DOI | MR | JFM
[19] Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197 (2010), 297-336. | DOI | MR | JFM
[20] Lin, F., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. 2 (1996), 1-22. | DOI | MR | JFM
[21] Lin, F., Liu, C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154 (2000), 135-156. | DOI | MR | JFM
[22] Lin, J., Ding, S.: On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces. Math. Methods Appl. Sci. 35 (2012), 158-173. | DOI | MR | JFM
[23] Liu, Q., Zhang, T., Zhao, J.: Global solutions to the 3D incompressible nematic liquid crystal system. J. Differ. Equations 258 (2015), 1519-1547. | DOI | MR | JFM
[24] Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density. Commun. Partial Differ. Equations 38 (2013), 1208-1234. | DOI | MR | JFM
[25] Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200 (2011), 1-19. | DOI | MR | JFM
[26] Xu, F., Hao, S., Yuan, J.: Well-posedness for the density-dependent incompressible flow of liquid crystals. Math. Methods. Appl. Sci. 38 (2015), 2680-2702. | DOI | MR | JFM
[27] Xu, X., Zhang, Z.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differ. Equations 252 (2012), 1169-1181. | DOI | MR | JFM
[28] Zhao, J., Liu, Q., Cui, S.: Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Commun. Pure Appl. Anal. 12 (2013), 341-357. | DOI | MR | JFM
Cité par Sources :