Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 609-628.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $C[0,t]$ denote a generalized Wiener space, the space of real-valued continuous functions on the interval $[0,t]$, and define a random vector $Z_n\colon C[0,t]\to \mathbb R^{n+1}$ by $$ Z_n(x)=\biggl (x(0)+a(0), \int _0^{t_1}h(s) {\rm d} x(s)+x(0)+a(t_1), \cdots ,\int _0^{t_n}h(s) {\rm d} x(s)+x(0)+a(t_n)\biggr ), $$ where $a\in C[0,t]$, $h\in L_2[0,t]$, and $0$ is a partition of $[0,t]$. Using simple formulas for generalized conditional Wiener integrals, given $Z_n$ we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions $F$ in a Banach algebra which corresponds to Cameron-Storvick's Banach algebra $\mathcal S$. Finally, we express the generalized analytic conditional Feynman integral of $F$ as a limit of the non-conditional generalized Wiener integral of a polygonal function using a change of scale transformation for which a normal density is the kernel. This result extends the existing change of scale formulas on the classical Wiener space, abstract Wiener space and the analogue of the Wiener space $C[0,t]$.
DOI : 10.21136/CMJ.2017.0248-15
Classification : 28C20, 60G05, 60G15, 60H05
Keywords: analogue of Wiener space; analytic conditional Feynman integral; change of scale formula; conditional Wiener integral; Wiener integral
@article{10_21136_CMJ_2017_0248_15,
     author = {Kim, Byoung Soo and Cho, Dong Hyun},
     title = {Relationships between generalized {Wiener} integrals and conditional analytic {Feynman} integrals over continuous paths},
     journal = {Czechoslovak Mathematical Journal},
     pages = {609--628},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2017},
     doi = {10.21136/CMJ.2017.0248-15},
     mrnumber = {3697906},
     zbl = {06770120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/}
}
TY  - JOUR
AU  - Kim, Byoung Soo
AU  - Cho, Dong Hyun
TI  - Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 609
EP  - 628
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/
DO  - 10.21136/CMJ.2017.0248-15
LA  - en
ID  - 10_21136_CMJ_2017_0248_15
ER  - 
%0 Journal Article
%A Kim, Byoung Soo
%A Cho, Dong Hyun
%T Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths
%J Czechoslovak Mathematical Journal
%D 2017
%P 609-628
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/
%R 10.21136/CMJ.2017.0248-15
%G en
%F 10_21136_CMJ_2017_0248_15
Kim, Byoung Soo; Cho, Dong Hyun. Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 609-628. doi : 10.21136/CMJ.2017.0248-15. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/

Cité par Sources :