Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 609-628
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $C[0,t]$ denote a generalized Wiener space, the space of real-valued continuous functions on the interval $[0,t]$, and define a random vector $Z_n\colon C[0,t]\to \mathbb R^{n+1}$ by $$ Z_n(x)=\biggl (x(0)+a(0), \int _0^{t_1}h(s) {\rm d} x(s)+x(0)+a(t_1), \cdots ,\int _0^{t_n}h(s) {\rm d} x(s)+x(0)+a(t_n)\biggr ), $$ where $a\in C[0,t]$, $h\in L_2[0,t]$, and $0$ is a partition of $[0,t]$. Using simple formulas for generalized conditional Wiener integrals, given $Z_n$ we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions $F$ in a Banach algebra which corresponds to Cameron-Storvick's Banach algebra $\mathcal S$. Finally, we express the generalized analytic conditional Feynman integral of $F$ as a limit of the non-conditional generalized Wiener integral of a polygonal function using a change of scale transformation for which a normal density is the kernel. This result extends the existing change of scale formulas on the classical Wiener space, abstract Wiener space and the analogue of the Wiener space $C[0,t]$.
DOI :
10.21136/CMJ.2017.0248-15
Classification :
28C20, 60G05, 60G15, 60H05
Keywords: analogue of Wiener space; analytic conditional Feynman integral; change of scale formula; conditional Wiener integral; Wiener integral
Keywords: analogue of Wiener space; analytic conditional Feynman integral; change of scale formula; conditional Wiener integral; Wiener integral
@article{10_21136_CMJ_2017_0248_15,
author = {Kim, Byoung Soo and Cho, Dong Hyun},
title = {Relationships between generalized {Wiener} integrals and conditional analytic {Feynman} integrals over continuous paths},
journal = {Czechoslovak Mathematical Journal},
pages = {609--628},
publisher = {mathdoc},
volume = {67},
number = {3},
year = {2017},
doi = {10.21136/CMJ.2017.0248-15},
mrnumber = {3697906},
zbl = {06770120},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/}
}
TY - JOUR AU - Kim, Byoung Soo AU - Cho, Dong Hyun TI - Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths JO - Czechoslovak Mathematical Journal PY - 2017 SP - 609 EP - 628 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/ DO - 10.21136/CMJ.2017.0248-15 LA - en ID - 10_21136_CMJ_2017_0248_15 ER -
%0 Journal Article %A Kim, Byoung Soo %A Cho, Dong Hyun %T Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths %J Czechoslovak Mathematical Journal %D 2017 %P 609-628 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/ %R 10.21136/CMJ.2017.0248-15 %G en %F 10_21136_CMJ_2017_0248_15
Kim, Byoung Soo; Cho, Dong Hyun. Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 609-628. doi: 10.21136/CMJ.2017.0248-15
Cité par Sources :