Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 609-628 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $C[0,t]$ denote a generalized Wiener space, the space of real-valued continuous functions on the interval $[0,t]$, and define a random vector $Z_n\colon C[0,t]\to \mathbb R^{n+1}$ by $$ Z_n(x)=\biggl (x(0)+a(0), \int _0^{t_1}h(s) {\rm d} x(s)+x(0)+a(t_1), \cdots ,\int _0^{t_n}h(s) {\rm d} x(s)+x(0)+a(t_n)\biggr ), $$ where $a\in C[0,t]$, $h\in L_2[0,t]$, and $0
Let $C[0,t]$ denote a generalized Wiener space, the space of real-valued continuous functions on the interval $[0,t]$, and define a random vector $Z_n\colon C[0,t]\to \mathbb R^{n+1}$ by $$ Z_n(x)=\biggl (x(0)+a(0), \int _0^{t_1}h(s) {\rm d} x(s)+x(0)+a(t_1), \cdots ,\int _0^{t_n}h(s) {\rm d} x(s)+x(0)+a(t_n)\biggr ), $$ where $a\in C[0,t]$, $h\in L_2[0,t]$, and $0$ is a partition of $[0,t]$. Using simple formulas for generalized conditional Wiener integrals, given $Z_n$ we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions $F$ in a Banach algebra which corresponds to Cameron-Storvick's Banach algebra $\mathcal S$. Finally, we express the generalized analytic conditional Feynman integral of $F$ as a limit of the non-conditional generalized Wiener integral of a polygonal function using a change of scale transformation for which a normal density is the kernel. This result extends the existing change of scale formulas on the classical Wiener space, abstract Wiener space and the analogue of the Wiener space $C[0,t]$.
DOI : 10.21136/CMJ.2017.0248-15
Classification : 28C20, 60G05, 60G15, 60H05
Keywords: analogue of Wiener space; analytic conditional Feynman integral; change of scale formula; conditional Wiener integral; Wiener integral
@article{10_21136_CMJ_2017_0248_15,
     author = {Kim, Byoung Soo and Cho, Dong Hyun},
     title = {Relationships between generalized {Wiener} integrals and conditional analytic {Feynman} integrals over continuous paths},
     journal = {Czechoslovak Mathematical Journal},
     pages = {609--628},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0248-15},
     mrnumber = {3697906},
     zbl = {06770120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/}
}
TY  - JOUR
AU  - Kim, Byoung Soo
AU  - Cho, Dong Hyun
TI  - Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 609
EP  - 628
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/
DO  - 10.21136/CMJ.2017.0248-15
LA  - en
ID  - 10_21136_CMJ_2017_0248_15
ER  - 
%0 Journal Article
%A Kim, Byoung Soo
%A Cho, Dong Hyun
%T Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths
%J Czechoslovak Mathematical Journal
%D 2017
%P 609-628
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0248-15/
%R 10.21136/CMJ.2017.0248-15
%G en
%F 10_21136_CMJ_2017_0248_15
Kim, Byoung Soo; Cho, Dong Hyun. Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 609-628. doi: 10.21136/CMJ.2017.0248-15

[1] Cameron, R. H.: The translation pathology of Wiener space. Duke Math. J. 21 (1954), 623-627. | DOI | MR | JFM

[2] Cameron, R. H., Martin, W. T.: The behavior of measure and measurability under change of scale in Wiener space. Bull. Am. Math. Soc. 53 (1947), 130-137. | DOI | MR | JFM

[3] Cameron, R. H., Storvick, D. A.: Some Banach algebras of analytic Feynman integrable functionals. Analytic Functions Proc. Conf. Kozubnik 1979, Lect. Notes Math. 798, Springer, Berlin (1980), 18-67. | DOI | MR | JFM

[4] Cameron, R. H., Storvick, D. A.: Change of scale formulas for Wiener integral. Functional Integration with Emphasis on the Feynman Integral Proc. Workshop Sherbrooke 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. (1988), 105-115. | MR | JFM

[5] Chang, K. S., Cho, D. H., Yoo, I.: Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space. Czech. Math. J. 54 (2004), 161-180. | DOI | MR | JFM

[6] Cho, D. H.: Change of scale formulas for conditional Wiener integrals as integral transforms over Wiener paths in abstract Wiener space. Commun. Korean Math. Soc. 22 (2007), 91-109. | DOI | MR | JFM

[7] Cho, D. H.: A simple formula for a generalized conditional Wiener integral and its applications. Int. J. Math. Anal., Ruse 7 (2013), 1419-1431. | DOI | MR | JFM

[8] Cho, D. H.: Analogues of conditional Wiener integrals with drift and initial distribution on a function space. Abstr. Appl. Anal. (2014), Article ID 916423, 12 pages. | DOI | MR

[9] Cho, D. H.: Scale transformations for present position-dependent conditional expectations over continuous paths. Ann. Funct. Anal. AFA 7 (2016), 358-370. | DOI | MR | JFM

[10] Cho, D. H.: Scale transformations for present position-independent conditional expectations. J. Korean Math. Soc. 53 (2016), 709-723. | DOI | MR | JFM

[11] Cho, D. H., Kim, B. J., Yoo, I.: Analogues of conditional Wiener integrals and their change of scale transformations on a function space. J. Math. Anal. Appl. 359 (2009), 421-438. | DOI | MR | JFM

[12] Cho, D. H., Yoo, I.: Change of scale formulas for a generalized conditional Wiener integral. Bull. Korean Math. Soc. 53 (2016), 1531-1548. | DOI | MR | JFM

[13] Im, M. K., Ryu, K. S.: An analogue of Wiener measure and its applications. J. Korean Math. Soc. 39 (2002), 801-819. | DOI | MR | JFM

[14] Kim, B. S.: Relationship between the Wiener integral and the analytic Feynman integral of cylinder function. J. Chungcheong Math. Soc. 27 (2014), 249-260. | DOI

[15] Kuo, H.-H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics 463, Springer, Berlin (1975). | DOI | MR | JFM

[16] Pierce, I. D.: On a Family of Generalized Wiener Spaces and Applications. Ph.D. Thesis, The University of Nebraska, Lincoln (2011). | MR

[17] Ryu, K. S., Im, M. K.: A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula. Trans. Am. Math. Soc. 354 (2002), 4921-4951. | DOI | MR | JFM

[18] Yoo, I., Chang, K. S., Cho, D. H., Kim, B. S., Song, T. S.: A change of scale formula for conditional Wiener integrals on classical Wiener space. J. Korean Math. Soc. 44 (2007), 1025-1050. | DOI | MR | JFM

[19] Yoo, I., Skoug, D.: A change of scale formula for Wiener integrals on abstract Wiener spaces. Int. J. Math. Math. Sci. 17 (1994), 239-247. | DOI | MR | JFM

[20] Yoo, I., Skoug, D.: A change of scale formula for Wiener integrals on abstract Wiener spaces II. J. Korean Math. Soc. 31 (1994), 115-129. | MR | JFM

[21] Yoo, I., Song, T. S., Kim, B. S., Chang, K. S.: A change of scale formula for Wiener integrals of unbounded functions. Rocky Mt. J. Math. 34 (2004), 371-389. | DOI | MR | JFM

Cité par Sources :