Keywords: Pełczyński's property (V); $C^*$-algebra; Grothendieck property
@article{10_21136_CMJ_2017_0242_16,
author = {Kruli\v{s}ov\'a, Hana},
title = {C*-algebras have a quantitative version of {Pe{\l}czy\'nski's} property {(V)}},
journal = {Czechoslovak Mathematical Journal},
pages = {937--951},
year = {2017},
volume = {67},
number = {4},
doi = {10.21136/CMJ.2017.0242-16},
mrnumber = {3736010},
zbl = {06819564},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0242-16/}
}
TY - JOUR AU - Krulišová, Hana TI - C*-algebras have a quantitative version of Pełczyński's property (V) JO - Czechoslovak Mathematical Journal PY - 2017 SP - 937 EP - 951 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0242-16/ DO - 10.21136/CMJ.2017.0242-16 LA - en ID - 10_21136_CMJ_2017_0242_16 ER -
%0 Journal Article %A Krulišová, Hana %T C*-algebras have a quantitative version of Pełczyński's property (V) %J Czechoslovak Mathematical Journal %D 2017 %P 937-951 %V 67 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0242-16/ %R 10.21136/CMJ.2017.0242-16 %G en %F 10_21136_CMJ_2017_0242_16
Krulišová, Hana. C*-algebras have a quantitative version of Pełczyński's property (V). Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 937-951. doi: 10.21136/CMJ.2017.0242-16
[1] Angosto, C., Cascales, B.: Measures of weak noncompactness in Banach spaces. Topology Appl. 156 (2009), 1412-1421. | DOI | MR | JFM
[2] Behrends, E.: New proofs of Rosenthal's $\ell^1$-theorem and the Josefson-Nissenzweig theorem. Bull. Pol. Acad. Sci., Math. 43 (1995), 283-295. | MR | JFM
[3] Bendová, H.: Quantitative Grothendieck property. J. Math. Anal. Appl. 412 (2014), 1097-1104. | DOI | MR | JFM
[4] Blasi, F. S. De: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 21 (1977), 259-262. | MR | JFM
[5] Gasparis, I.: $\epsilon$-weak Cauchy sequences and a quantitative version of Rosenthal's $\ell_1$-theorem. J. Math. Anal. Appl. 434 (2016), 1160-1165. | DOI | MR | JFM
[6] Harmand, P., Werner, D., Werner, W.: $M$-Ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics 1547, Springer, Berlin (1993). | DOI | MR | JFM
[7] Kalenda, O. F. K., Pfitzner, H., Spurný, J.: On quantification of weak sequential completeness. J. Funct. Anal. 260 (2011), 2986-2996. | DOI | MR | JFM
[8] Krulišová, H.: Quantification of Pe{ł}czyński's property (V). To appear in Math. Nachr.
[9] Lechner, J.: 1-Grothendieck $C(K)$ spaces. J. Math. Anal. Appl. 446 (2017), 1362-1371. | DOI | MR | JFM
[10] Pfitzner, H.: Weak compactness in the dual of a $C^{\ast}$-algebra is determined commutatively. Math. Ann. 298 (1994), 349-371. | DOI | MR | JFM
[11] Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987). | MR | JFM
[12] Simons, S.: On the Dunford-Pettis property and Banach spaces that contain $c_0$. Math. Ann. 216 (1975), 225-231. | DOI | MR | JFM
[13] Takesaki, M.: Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences 124, Operator Algebras and Non-Commutative Geometry 5, Springer, Berlin (2002). | MR | JFM
Cité par Sources :