C*-algebras have a quantitative version of Pełczyński's property (V)
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 937-951
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A Banach space $X$ has Pełczyński's property (V) if for every Banach space $Y$ every unconditionally converging operator $T\colon X\to Y$ is weakly compact. H. Pfitzner proved that $C^*$-algebras have Pełczyński's property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that $C(K)$ spaces for a compact Hausdorff space $K$ enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner's theorem. Moreover, we prove that in dual Banach spaces a quantitative version of the property (V) implies a quantitative version of the Grothendieck property.
A Banach space $X$ has Pełczyński's property (V) if for every Banach space $Y$ every unconditionally converging operator $T\colon X\to Y$ is weakly compact. H. Pfitzner proved that $C^*$-algebras have Pełczyński's property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that $C(K)$ spaces for a compact Hausdorff space $K$ enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner's theorem. Moreover, we prove that in dual Banach spaces a quantitative version of the property (V) implies a quantitative version of the Grothendieck property.
DOI : 10.21136/CMJ.2017.0242-16
Classification : 46B04, 46L05, 47B10
Keywords: Pełczyński's property (V); $C^*$-algebra; Grothendieck property
@article{10_21136_CMJ_2017_0242_16,
     author = {Kruli\v{s}ov\'a, Hana},
     title = {C*-algebras have a quantitative version of {Pe{\l}czy\'nski's} property {(V)}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {937--951},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0242-16},
     mrnumber = {3736010},
     zbl = {06819564},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0242-16/}
}
TY  - JOUR
AU  - Krulišová, Hana
TI  - C*-algebras have a quantitative version of Pełczyński's property (V)
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 937
EP  - 951
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0242-16/
DO  - 10.21136/CMJ.2017.0242-16
LA  - en
ID  - 10_21136_CMJ_2017_0242_16
ER  - 
%0 Journal Article
%A Krulišová, Hana
%T C*-algebras have a quantitative version of Pełczyński's property (V)
%J Czechoslovak Mathematical Journal
%D 2017
%P 937-951
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0242-16/
%R 10.21136/CMJ.2017.0242-16
%G en
%F 10_21136_CMJ_2017_0242_16
Krulišová, Hana. C*-algebras have a quantitative version of Pełczyński's property (V). Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 937-951. doi: 10.21136/CMJ.2017.0242-16

[1] Angosto, C., Cascales, B.: Measures of weak noncompactness in Banach spaces. Topology Appl. 156 (2009), 1412-1421. | DOI | MR | JFM

[2] Behrends, E.: New proofs of Rosenthal's $\ell^1$-theorem and the Josefson-Nissenzweig theorem. Bull. Pol. Acad. Sci., Math. 43 (1995), 283-295. | MR | JFM

[3] Bendová, H.: Quantitative Grothendieck property. J. Math. Anal. Appl. 412 (2014), 1097-1104. | DOI | MR | JFM

[4] Blasi, F. S. De: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 21 (1977), 259-262. | MR | JFM

[5] Gasparis, I.: $\epsilon$-weak Cauchy sequences and a quantitative version of Rosenthal's $\ell_1$-theorem. J. Math. Anal. Appl. 434 (2016), 1160-1165. | DOI | MR | JFM

[6] Harmand, P., Werner, D., Werner, W.: $M$-Ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics 1547, Springer, Berlin (1993). | DOI | MR | JFM

[7] Kalenda, O. F. K., Pfitzner, H., Spurný, J.: On quantification of weak sequential completeness. J. Funct. Anal. 260 (2011), 2986-2996. | DOI | MR | JFM

[8] Krulišová, H.: Quantification of Pe{ł}czyński's property (V). To appear in Math. Nachr.

[9] Lechner, J.: 1-Grothendieck $C(K)$ spaces. J. Math. Anal. Appl. 446 (2017), 1362-1371. | DOI | MR | JFM

[10] Pfitzner, H.: Weak compactness in the dual of a $C^{\ast}$-algebra is determined commutatively. Math. Ann. 298 (1994), 349-371. | DOI | MR | JFM

[11] Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987). | MR | JFM

[12] Simons, S.: On the Dunford-Pettis property and Banach spaces that contain $c_0$. Math. Ann. 216 (1975), 225-231. | DOI | MR | JFM

[13] Takesaki, M.: Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences 124, Operator Algebras and Non-Commutative Geometry 5, Springer, Berlin (2002). | MR | JFM

Cité par Sources :