4-cycle properties for characterizing rectagraphs and hypercubes
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 29-36.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A $(0,2)$-graph is a connected graph, where each pair of vertices has either 0 or 2 common neighbours. These graphs constitute a subclass of $(0,\lambda )$-graphs introduced by Mulder in 1979. A rectagraph, well known in diagram geometry, is a triangle-free $(0,2)$-graph. $(0,2)$-graphs include hypercubes, folded cube graphs and some particular graphs such as icosahedral graph, Shrikhande graph, Klein graph, Gewirtz graph, etc. In this paper, we give some local properties of 4-cycles in $(0,\lambda )$-graphs and more specifically in $(0,2)$-graphs, leading to new characterizations of rectagraphs and hypercubes.
DOI : 10.21136/CMJ.2017.0227-15
Classification : 05C75
Keywords: hypercube; $(0, 2)$-graph; rectagraph; 4-cycle; characterization
@article{10_21136_CMJ_2017_0227_15,
     author = {Bouanane, Khadra and Berrachedi, Abdelhafid},
     title = {4-cycle properties for characterizing rectagraphs and hypercubes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2017},
     doi = {10.21136/CMJ.2017.0227-15},
     mrnumber = {3632996},
     zbl = {06738502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/}
}
TY  - JOUR
AU  - Bouanane, Khadra
AU  - Berrachedi, Abdelhafid
TI  - 4-cycle properties for characterizing rectagraphs and hypercubes
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 29
EP  - 36
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/
DO  - 10.21136/CMJ.2017.0227-15
LA  - en
ID  - 10_21136_CMJ_2017_0227_15
ER  - 
%0 Journal Article
%A Bouanane, Khadra
%A Berrachedi, Abdelhafid
%T 4-cycle properties for characterizing rectagraphs and hypercubes
%J Czechoslovak Mathematical Journal
%D 2017
%P 29-36
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/
%R 10.21136/CMJ.2017.0227-15
%G en
%F 10_21136_CMJ_2017_0227_15
Bouanane, Khadra; Berrachedi, Abdelhafid. 4-cycle properties for characterizing rectagraphs and hypercubes. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 29-36. doi : 10.21136/CMJ.2017.0227-15. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/

Cité par Sources :