Keywords: hypercube; $(0, 2)$-graph; rectagraph; 4-cycle; characterization
@article{10_21136_CMJ_2017_0227_15,
author = {Bouanane, Khadra and Berrachedi, Abdelhafid},
title = {4-cycle properties for characterizing rectagraphs and hypercubes},
journal = {Czechoslovak Mathematical Journal},
pages = {29--36},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0227-15},
mrnumber = {3632996},
zbl = {06738502},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/}
}
TY - JOUR AU - Bouanane, Khadra AU - Berrachedi, Abdelhafid TI - 4-cycle properties for characterizing rectagraphs and hypercubes JO - Czechoslovak Mathematical Journal PY - 2017 SP - 29 EP - 36 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/ DO - 10.21136/CMJ.2017.0227-15 LA - en ID - 10_21136_CMJ_2017_0227_15 ER -
%0 Journal Article %A Bouanane, Khadra %A Berrachedi, Abdelhafid %T 4-cycle properties for characterizing rectagraphs and hypercubes %J Czechoslovak Mathematical Journal %D 2017 %P 29-36 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/ %R 10.21136/CMJ.2017.0227-15 %G en %F 10_21136_CMJ_2017_0227_15
Bouanane, Khadra; Berrachedi, Abdelhafid. 4-cycle properties for characterizing rectagraphs and hypercubes. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 29-36. doi: 10.21136/CMJ.2017.0227-15
[1] Berrachedi, A., Mollard, M.: Median graphs and hypercubes, some new characterizations. Discrete Math. 208-209 (1999), 71-75. | DOI | MR | JFM
[2] Brouwer, A. E.: Classification of small $(0,2)$-graphs. J. Comb. Theory Ser. A 113 (2006), 1636-1645. | DOI | MR | JFM
[3] Brouwer, A. E., Östergård, P. R. J.: Classification of the {$(0,2)$}-graphs of valency 8. Discrete Math. 309 (2009), 532-547. | DOI | MR | JFM
[4] Burosch, G., Havel, I., Laborde, J.-M.: Distance monotone graphs and a new characterization of hypercubes. Discrete Math. 110 (1992), 9-16. | DOI | MR | JFM
[5] Laborde, J.-M., Hebbare, S. P. Rao: Another characterization of hypercubes. Discrete Math. 39 (1982), 161-166. | DOI | MR | JFM
[6] Mulder, H. M.: $(0,\lambda )$-graphs and $n$-cubes. Discrete Math. 28 (1979), 179-188. | DOI | MR | JFM
[7] Mulder, H. M.: The Interval Function of a Graph. Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam (1980). | MR | JFM
[8] Mulder, H. M.: Interval-regular graphs. Discrete Math. 41 (1982), 253-269. | DOI | MR | JFM
[9] Neumaier, A.: Rectagraphs, diagrams, and Suzuki's sporadic simple group. Ann. Discrete Math. 15 (1982), 305-318. | DOI | MR | JFM
[10] Nieminen, J., Peltola, M., Ruotsalainen, P.: Two characterizations of hypercubes. Electron. J. Comb. (electronic only) 18 (2011), Research Paper 97 10 pages. | MR | JFM
[11] Sabidussi, G.: Graph multiplication. Math. Z. 72 (1960), 446-457. | DOI | MR | JFM
Cité par Sources :