4-cycle properties for characterizing rectagraphs and hypercubes
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 29-36
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A $(0,2)$-graph is a connected graph, where each pair of vertices has either 0 or 2 common neighbours. These graphs constitute a subclass of $(0,\lambda )$-graphs introduced by Mulder in 1979. A rectagraph, well known in diagram geometry, is a triangle-free $(0,2)$-graph. $(0,2)$-graphs include hypercubes, folded cube graphs and some particular graphs such as icosahedral graph, Shrikhande graph, Klein graph, Gewirtz graph, etc. In this paper, we give some local properties of 4-cycles in $(0,\lambda )$-graphs and more specifically in $(0,2)$-graphs, leading to new characterizations of rectagraphs and hypercubes.
DOI :
10.21136/CMJ.2017.0227-15
Classification :
05C75
Keywords: hypercube; $(0, 2)$-graph; rectagraph; 4-cycle; characterization
Keywords: hypercube; $(0, 2)$-graph; rectagraph; 4-cycle; characterization
@article{10_21136_CMJ_2017_0227_15,
author = {Bouanane, Khadra and Berrachedi, Abdelhafid},
title = {4-cycle properties for characterizing rectagraphs and hypercubes},
journal = {Czechoslovak Mathematical Journal},
pages = {29--36},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2017},
doi = {10.21136/CMJ.2017.0227-15},
mrnumber = {3632996},
zbl = {06738502},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/}
}
TY - JOUR AU - Bouanane, Khadra AU - Berrachedi, Abdelhafid TI - 4-cycle properties for characterizing rectagraphs and hypercubes JO - Czechoslovak Mathematical Journal PY - 2017 SP - 29 EP - 36 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/ DO - 10.21136/CMJ.2017.0227-15 LA - en ID - 10_21136_CMJ_2017_0227_15 ER -
%0 Journal Article %A Bouanane, Khadra %A Berrachedi, Abdelhafid %T 4-cycle properties for characterizing rectagraphs and hypercubes %J Czechoslovak Mathematical Journal %D 2017 %P 29-36 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0227-15/ %R 10.21136/CMJ.2017.0227-15 %G en %F 10_21136_CMJ_2017_0227_15
Bouanane, Khadra; Berrachedi, Abdelhafid. 4-cycle properties for characterizing rectagraphs and hypercubes. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 29-36. doi: 10.21136/CMJ.2017.0227-15
Cité par Sources :