Keywords: disjoint hypercyclic powers of weighted translations; aperiodic element; locally compact group
@article{10_21136_CMJ_2017_0204_16,
author = {Zhang, Liang and Lu, Hui-Qiang and Fu, Xiao-Mei and Zhou, Ze-Hua},
title = {Disjoint hypercyclic powers of weighted translations on groups},
journal = {Czechoslovak Mathematical Journal},
pages = {839--853},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0204-16},
mrnumber = {3697921},
zbl = {06770135},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0204-16/}
}
TY - JOUR AU - Zhang, Liang AU - Lu, Hui-Qiang AU - Fu, Xiao-Mei AU - Zhou, Ze-Hua TI - Disjoint hypercyclic powers of weighted translations on groups JO - Czechoslovak Mathematical Journal PY - 2017 SP - 839 EP - 853 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0204-16/ DO - 10.21136/CMJ.2017.0204-16 LA - en ID - 10_21136_CMJ_2017_0204_16 ER -
%0 Journal Article %A Zhang, Liang %A Lu, Hui-Qiang %A Fu, Xiao-Mei %A Zhou, Ze-Hua %T Disjoint hypercyclic powers of weighted translations on groups %J Czechoslovak Mathematical Journal %D 2017 %P 839-853 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0204-16/ %R 10.21136/CMJ.2017.0204-16 %G en %F 10_21136_CMJ_2017_0204_16
Zhang, Liang; Lu, Hui-Qiang; Fu, Xiao-Mei; Zhou, Ze-Hua. Disjoint hypercyclic powers of weighted translations on groups. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 839-853. doi: 10.21136/CMJ.2017.0204-16
[1] Bayart, F., Matheron, E.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). | DOI | MR | JFM
[2] Bernal-González, L.: Disjoint hypercyclic operators. Stud. Math. 182 (2007), 113-131. | DOI | MR | JFM
[3] Bès, J., Martin, Ö., Peris, A.: Disjoint hypercyclic linear fractional composition operators. J. Math. Anal. Appl. 381 (2011), 843-856. | DOI | MR | JFM
[4] Bès, J., Martin, Ö., Peris, A., Shkarin, S.: Disjoint mixing operators. J. Funct. Anal. 263 (2012), 1283-1322. | DOI | MR | JFM
[5] Bès, J., Martin, Ö., Sanders, R.: Weighted shifts and disjoint hypercyclicity. J. Oper. Theory 72 (2014), 15-40. | DOI | MR | JFM
[6] Bès, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336 (2007), 297-315. | DOI | MR | JFM
[7] Chen, C. C.: Supercyclic and Cesàro hypercyclic weighted translations on groups. Taiwanese J. Math. 16 (2012), 1815-1827. | DOI | MR | JFM
[8] Chen, C. C., Chu, C. H.: Hypercyclicity of weighted convolution operators on homogeneous spaces. Proc. Am. Math. Soc. 137 (2009), 2709-2718. | DOI | MR | JFM
[9] Chen, C. C., Chu, C. H.: Hypercyclic weighted translations on groups. Proc. Am. Math. Soc. 139 (2011), 2839-2846. | DOI | MR | JFM
[10] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext, Springer, London (2011). | DOI | MR | JFM
[11] Grosser, S., Moskowitz, M.: On central topological groups. Trans. Am. Math. Soc. 127 (1967), 317-340. | DOI | MR | JFM
[12] Han, S.-A., Liang, Y.-X.: Disjoint hypercyclic weighted translations generated by aperiodic elements. Collect. Math. 67 (2016), 347-356. | DOI | MR | JFM
[13] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups, Integration Theory, Group Representations. Grundlehren der Mathematischen Wissenschaften 115, A Series of Comprehensive Studies in Mathematics, Springer, Berlin (1979). | MR | JFM
[14] Liang, Y. X., Xia, L.: Disjoint supercyclic weighted translations generated by aperiodic elements. Collect. Math. 68 (2017), 265-278. | DOI | MR | JFM
[15] Martin, "O.: Disjoint Hypercyclic and Supercyclic Composition Operators. PhD Thesis, Bowling Green State University, Bowling Green (2010). | MR | JFM
[16] Salas, H. N.: Dual disjoint hypercyclic operators. J. Math. Anal. Appl. 374 (2011), 106-117. | DOI | MR | JFM
[17] Shkarin, S.: A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367 (2010), 713-715. | DOI | MR | JFM
[18] Zhang, L., Zhou, Z.-H.: Notes about the structure of common supercyclic vectors. J. Math. Anal. Appl. 418 (2014), 336-343. | DOI | MR | JFM
Cité par Sources :