Disjoint hypercyclic powers of weighted translations on groups
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 839-853
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a locally compact group and let $1 \le p \infty .$ Recently, Chen et al.\ characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space $L^p(G)$ in terms of the weights. Sufficient and necessary conditions for disjoint hypercyclic and disjoint supercyclic powers of weighted translations generated by aperiodic elements on groups will be given.
Let $G$ be a locally compact group and let $1 \le p \infty .$ Recently, Chen et al.\ characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space $L^p(G)$ in terms of the weights. Sufficient and necessary conditions for disjoint hypercyclic and disjoint supercyclic powers of weighted translations generated by aperiodic elements on groups will be given.
DOI : 10.21136/CMJ.2017.0204-16
Classification : 46E15, 47A16, 47B38
Keywords: disjoint hypercyclic powers of weighted translations; aperiodic element; locally compact group
@article{10_21136_CMJ_2017_0204_16,
     author = {Zhang, Liang and Lu, Hui-Qiang and Fu, Xiao-Mei and Zhou, Ze-Hua},
     title = {Disjoint hypercyclic powers of weighted translations on groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {839--853},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0204-16},
     mrnumber = {3697921},
     zbl = {06770135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0204-16/}
}
TY  - JOUR
AU  - Zhang, Liang
AU  - Lu, Hui-Qiang
AU  - Fu, Xiao-Mei
AU  - Zhou, Ze-Hua
TI  - Disjoint hypercyclic powers of weighted translations on groups
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 839
EP  - 853
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0204-16/
DO  - 10.21136/CMJ.2017.0204-16
LA  - en
ID  - 10_21136_CMJ_2017_0204_16
ER  - 
%0 Journal Article
%A Zhang, Liang
%A Lu, Hui-Qiang
%A Fu, Xiao-Mei
%A Zhou, Ze-Hua
%T Disjoint hypercyclic powers of weighted translations on groups
%J Czechoslovak Mathematical Journal
%D 2017
%P 839-853
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0204-16/
%R 10.21136/CMJ.2017.0204-16
%G en
%F 10_21136_CMJ_2017_0204_16
Zhang, Liang; Lu, Hui-Qiang; Fu, Xiao-Mei; Zhou, Ze-Hua. Disjoint hypercyclic powers of weighted translations on groups. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 839-853. doi: 10.21136/CMJ.2017.0204-16

[1] Bayart, F., Matheron, E.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). | DOI | MR | JFM

[2] Bernal-González, L.: Disjoint hypercyclic operators. Stud. Math. 182 (2007), 113-131. | DOI | MR | JFM

[3] Bès, J., Martin, Ö., Peris, A.: Disjoint hypercyclic linear fractional composition operators. J. Math. Anal. Appl. 381 (2011), 843-856. | DOI | MR | JFM

[4] Bès, J., Martin, Ö., Peris, A., Shkarin, S.: Disjoint mixing operators. J. Funct. Anal. 263 (2012), 1283-1322. | DOI | MR | JFM

[5] Bès, J., Martin, Ö., Sanders, R.: Weighted shifts and disjoint hypercyclicity. J. Oper. Theory 72 (2014), 15-40. | DOI | MR | JFM

[6] Bès, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336 (2007), 297-315. | DOI | MR | JFM

[7] Chen, C. C.: Supercyclic and Cesàro hypercyclic weighted translations on groups. Taiwanese J. Math. 16 (2012), 1815-1827. | DOI | MR | JFM

[8] Chen, C. C., Chu, C. H.: Hypercyclicity of weighted convolution operators on homogeneous spaces. Proc. Am. Math. Soc. 137 (2009), 2709-2718. | DOI | MR | JFM

[9] Chen, C. C., Chu, C. H.: Hypercyclic weighted translations on groups. Proc. Am. Math. Soc. 139 (2011), 2839-2846. | DOI | MR | JFM

[10] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext, Springer, London (2011). | DOI | MR | JFM

[11] Grosser, S., Moskowitz, M.: On central topological groups. Trans. Am. Math. Soc. 127 (1967), 317-340. | DOI | MR | JFM

[12] Han, S.-A., Liang, Y.-X.: Disjoint hypercyclic weighted translations generated by aperiodic elements. Collect. Math. 67 (2016), 347-356. | DOI | MR | JFM

[13] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups, Integration Theory, Group Representations. Grundlehren der Mathematischen Wissenschaften 115, A Series of Comprehensive Studies in Mathematics, Springer, Berlin (1979). | MR | JFM

[14] Liang, Y. X., Xia, L.: Disjoint supercyclic weighted translations generated by aperiodic elements. Collect. Math. 68 (2017), 265-278. | DOI | MR | JFM

[15] Martin, "O.: Disjoint Hypercyclic and Supercyclic Composition Operators. PhD Thesis, Bowling Green State University, Bowling Green (2010). | MR | JFM

[16] Salas, H. N.: Dual disjoint hypercyclic operators. J. Math. Anal. Appl. 374 (2011), 106-117. | DOI | MR | JFM

[17] Shkarin, S.: A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367 (2010), 713-715. | DOI | MR | JFM

[18] Zhang, L., Zhou, Z.-H.: Notes about the structure of common supercyclic vectors. J. Math. Anal. Appl. 418 (2014), 336-343. | DOI | MR | JFM

Cité par Sources :